
M
edium

-Sized PLC Program
m

ing Softw
are User Guide

User Guide

A00
Data code 19010980Copyright 　 Shenzhen Inovance Technology Co., Ltd.

Shenzhen Inovance Technology Co., Ltd.
Add.: Building E, Hongwei Industry Park, Liuxian Road, Baocheng No. 70 Zone, Bao’an District, Shenzhen
Tel: +86-755-2979 9595
Fax: +86-755-2961 9897
Service Hotline: 400-777-1260
http: //www.inovance.com

Suzhou Inovance Technology Co., Ltd.
Add.: No. 16 Youxiang Road, Yuexi Town, Wuzhong District, Suzhou 215104, P.R. China
Tel: +86-512-6637 6666
Fax: +86-512-6285 6720
Service Hotline: 400-777-1260
http: //www.inovance.com

User Guide

Medium-Sized PLC Programming Software

AM400/AM600/AC800

and Closed Loop

-1-

Contents

Contents

Chapter 1 Product Information .. 7

1.1 Overview ..8

1.1.1 Product Information .. 8

1.1.2 Product Configuration and Module Description ... 10

1.1.3 System Application Process .. 13

1.2 Overview of InoProShop ..14

1.2.1 Brief Introduction .. 14

1.2.2 Connection Between InoProShop and Hardware ... 14

1.2.3 Acquisition and Installation Requirements ... 15

1.2.4 Installation Procedure ... 15

1.2.5 Uninstallation ... 20

Chapter 2 Quick Start .. 21

2.1 Programming Environment Launching ...22

2.2 Typical Procedure for Writing a User Program..24

2.2.1 User System Configuration Operations .. 24

2.2.2 User Program Writing Operations .. 25

2.2.3 Linkage Configuration Between User Program Variables and Ports ... 27

2.2.4 Configuring the Execution Mode and Running Period of User Program ... 28

2.2.5 User Program Compiling and Login Download ... 28

2.3 Writing a Marquee Sample Project with InoProShop ...31

2.4 How to Log In to the Main Module ...36

2.4.1 Prerequisites and Operations of Main Module Login .. 36

2.4.2 Scanning Medium-Sized PLC in InoProShop ... 36

2.4.3 Solution to AM600 Scanning Failure ... 38

Chapter 3 Network Settings ... 43

3.1 Device Configuration ..44

3.1.1 Network Configuration .. 44

3.1.2 Hardware Configuration .. 49

3.1.3 Configuration Compiling Error Locating .. 51

3.2 CPU Configuration ..51

3.2.1 General CPU Configuration Procedure... 52

3.2.2 CPU Parameter Configurations ... 52

3.2.3 I/O Module Configurations .. 57

-2-

Contents

3.2.4 High-Speed I/O Configuration .. 68

3.3 EtherCAT Configuration ..74

3.3.1 Overview ... 74

3.3.2 Common Functions ... 74

3.3.3 EtherCAT Master Station .. 85

3.3.4 EtherCAT Slave Station .. 91

3.3.5 CiA402 ...105

3.3.6 Virtual Axis ..113

3.3.7 AM600-4PME Position Module ..114

3.3.8 AM600-2HCE Counter Module ...116

3.3.9 I/O Module ..119

3.3.10 Library (Implicit Variables) ..120

3.4 Modbus Editor ...131

3.4.1 Modbus Master Station Configuration ...132

3.4.2 Modbus Master-Slave Connection Configuration..133

3.4.3 Modbus Master Station Broadcast Configuration ...136

3.4.4 Modbus Slave Station Configuration ..137

3.4.5 Modbus Device Diagnosis ...137

3.4.6 Common Errors of Modbus ...138

3.4.7 Modbus Variable Addressing ...138

3.4.8 Modbus Communication Frame Format ..141

3.5 Using Free Protocols on COM Ports ...144

3.5.1 Overview ...144

3.5.2 Serial Hardware Port ...144

3.5.3 COM Port Configuration ..145

3.5.4 Communication Configuration ...145

3.5.5 Registers for Data Sending and Receiving ..145

3.5.6 Data Send/Receive Tests Through the COM Port Debugging Assistant ...147

3.6 Modbus TCP Device Editor ...148

3.6.1 Configuring a Modbus TCP Master ...149

3.6.2 Configuring Modbus TCP Master-Slave Connection ...149

3.6.3 Configuring a Modbus TCP Slave ..152

3.6.4 Diagnosing Modbus TCP Devices ..153

3.6.5 Common Errors of Modbus TCP ...153

3.6.6 Modbus TCP Communication Frame Format ..154

3.7 CANopen Network...158

3.7.1 General Process of Using CANopen ..159

-3-

Contents

3.7.2 Configuring a CANopen Master ...162

3.7.3 Configuring a CANopen Slave ...165

3.7.4 CANopen Module ...178

3.7.5 Programming Interface ...178

3.8 CANlink 3.0 Configuration Editor ...178

3.8.1 CANlink 3.0 Network Structure ...179

3.8.2 General CANlink Use Process ..180

3.8.3 CANlink Network Configuration ...181

3.8.5 Send Configuration ..185

3.8.6 Receive Configuration ...189

3.8.7 Synchronous Write by the Master ...189

3.8.8 Local Slave Configuration ...191

3.8.9 Device Access to the CANlink 3.0 Network ...191

3.9 PROFIBUS DP Bus ...196

3.9.1 General Process of Using PROFIBUS DP ...196

3.9.2 PROFIBUS DP Master Configuration ...197

3.9.3 PROFIBUS DP Slave Configuration ...198

3.9.4 PROFIBUS DP Module ..201

3.10 HMI Communication Configuration...201

3.10.1 Communication Configuration ...201

3.10.2 Communication Example ..204

3.10.3 Fault Analysis ...205

Chapter 4 Programming Basics ... 207

4.1 Direct Address ...208

4.1.1 Syntax ...208

4.1.2 PLC Direct Address Storage Area ..209

4.2 Variable ..209

4.2.1 Variable Definition ...209

4.2.2 Variable Type ..216

4.3 Constant ...223

Chapter 5 Programming Language ... 225

5.1 Programming Languages Supported by InoProShop ..226

5.2 Structured Text (ST) ..226

5.2.1 Expression ..226

5.2.2 ST Instruction ...227

5.3 Ladder Diagram (LD) ...234

-4-

Contents

5.3.1 Overview ...234

5.3.2 LD Elements ...235

5.3.3 LD Editor Options ...238

5.3.4 Element Selection ..241

5.3.5 Standard Edit Commands ...243

5.3.6 LD Menu Commands ...246

5.3.7 Single-key Command ..255

5.3.8 Parallel Line Connection ...256

5.3.9 Drag and Drop ..256

5.3.10 Graphic Display Tool ..258

5.3.11 LD Debugging ...260

5.3.12 LD Data Update ..263

Chapter 6 Inovance Instruction Library ... 265

6.1 Cheat Sheet of Instructions ..266

6.1.1 Instructions ..266

6.1.2 Instruction Classification ..266

6.1.3 Cheat Sheet of Motion Control Instructions ..266

6.2 High-speed I/O ..275

6.2.1 High-speed Counting ...275

6.2.2 High-speed Axis ..288

6.2.3 External Interrupt ...302

6.2.4 List of Function Blocks ..303

6.2.5 7-segment LED Display ..303

6.3 CANopen ..304

6.3.1 CiA405 ...304

6.3.2 CANopen 402 ..319

6.3.3 CANopen 402 Parameter Setting ..339

6.3.4 CANopen 402 Error Diagnosis ...342

6.3.5 Precautions ..344

6.4 EtherCAT Remote Counting ..344

6.4.1 HC_Counter_ETC ...345

6.4.2 HC_SetCompare_ETC ..347

6.4.3 HC_Presetvalue_ETC ...349

6.4.4 HC_TouchProbe_ETC ..351

6.4.5 HC_Reset_ETC ..353

6.5 Process Library ..354

6.6 Others ..354

-5-

Contents

6.6.1 MC_Jog_HC ..355

6.6.2 MC_ResetDrive ...357

6.6.3 MC_ResetRemoteModule ..359

6.6.4 MC_PersistPosition ..361

Chapter 7 Diagnosis .. 365

7.1 Overview ..366

7.2 Configuration Diagnosis ...366

7.2.1 Network Configuration Diagnosis ..366

7.2.2 Hardware Configuration Diagnosis ..368

7.3 Fault Diagnosis ..368

7.4 List of Device Self-diagnosis Information ..370

7.4.1 CPU Diagnosis ..370

7.4.2 EtherCAT Diagnosis ..370

7.4.3 I/O Diagnosis ..371

7.4.4 CANopen Diagnosis ...371

7.4.5 PROFIBUS DP Diagnosis ..371

7.4.6 Modbus RTU Diagnosis ..376

7.4.7 Modbus TCP Diagnosis ..376

7.4.8 CANlink Diagnosis ..376

7.5 Diagnosis Programming Interface ...377

7.5.1 Overview ...377

7.5.2 CPU Diagnosis Programming Interface ..378

7.5.3 CANopen Diagnosis Programming Interface ...380

7.5.4 PROFIBUS DP Diagnosis Programming Interface ..382

7.5.5 CANlink Diagnosis Programming Interface ..384

7.5.6 Modbus Diagnosis Programming Interface ...385

7.5.7 Modbus TCP Diagnosis Programming Interface ..387

7.5.8 CPU Stop Control ...389

7.5.9 EtherCAT Diagnosis ..389

Appendix .. 391

Appendix A Communication Protocols for Communication Ports ..392

A.1 Mini-USB Port and Built-in Communication Protocol..392

A.2 COM0/COM1 Communication Port and Built-in Protocol ..392

A.3 CANopen Communication Protocol ..393

A.4 CANlink Communication Protocol ..393

A.5 EtherNET Port and Communication Protocol ..394

-6-

Contents

A.6 EtherCAT Port and Communication Protocol ...394

A.7 High-speed I/O Interface ..394

A.8 Mini-SD Card Slot ..394

A.9 Local Bus Expansion Interface ...394

A.10 PROFIBUS DP Port ..394

Appendix B Soft Element ..395

Appendix C Cheat Sheet of Basic Instructions ..396

Appendix D Guide to PLC Programming Software Upgrade ..398

Version ...398

Upgrade Method ...398

FAQs ...402

Appendix E High-speed I/O Compatibility ..409

User Guide ...409

High-speed I/O Diagnosis ...411

Appendix F Diagnosis Code and Diagnosis Information ..416

CPU Diagnosis Code ...416

I/O Module Diagnosis Code ..418

CANopen Diagnosis Code...418

DP Diagnosis Code ..420

CANlink Diagnosis Code ...420

Modbus Diagnosis Code ...421

EtherCAT Diagnosis Code ...422

Chapter 1 Product
Information

1.1 Overview ..8

1.1.1 Product Information .. 8

1.1.2 Product Configuration and Module Description ... 10

1.1.3 System Application Process .. 13

1.2 Overview of InoProShop ..14

1.2.1 Brief Introduction .. 14

1.2.2 Connection Between InoProShop and Hardware ... 14

1.2.3 Acquisition and Installation Requirements ... 15

1.2.4 Installation Procedure ... 15

1.2.5 Uninstallation ... 20

-8-

Contents

1. Product Information
1.1 Overview

1.1.1 Product Information

Inovance medium-sized programmable logic controllers (PLCs), including AM400, AM600, and AC800
series, provide intelligent automation solutions for users. These PLCs use the IEC61131-3 programming
language, and supports six programming languages of the PLCopen standard. The AM400 and AM600
use the rack structure, with each rack supporting 16 local expansion modules and also remote expansion
modules through multiple field buses such as PROFIBUS DP, EtherCAT and CANopen. The AM600 local
expansion modules, that is, I/O modules, are connected through the internal bus protocol, including
digital input (DI), digital output (DO), analog input (AI), analog output (AO), and temperature modules.
The AM600 has the following functions:

(1) High-performance motion control function through the EtherCAT bus

(2) Single-axis acceleration/deceleration control, electronic gear, and electronic cam, and basic single-axis
positioning with the maximum frequency of 200 kHz through the high-speed I/O

(3) Communication functions through the RS485, Ethernet, and USB ports

The AC800 adopts the booksize structure and excellent motion control of up to 256 axes, meeting various
application requirements of users.

The medium-sized PLC has the following features:

1) Multiple motion control functions: bus motion control and pulse motion control

2) Abundant I/O channels, up to ten thousand channels

3) Large program capacity and data storage

4) Fast instruction execution speed

5) Various high-end field buses including PROFIBUS DP, EtherCAT, and CANopen

6) Easy-to-use software

7) Online debugging mode

8) Online editing mode

The following table lists the CPU module types and their function differences.

Table 1-1 Functional characteristics of different CPU module types

Product Model

Number
of Local

Expansion
Modules

Program
Storage
Space

Data
Storage
Space

Data
Stored

at Power
Failure

Motion
Control

Axes
High-speed I/O

Soft
Element

Output
Type

AM401-CPU1608TP 8 10 MB 20 MB 512 KB

4 servo
axes, 4

positioning
axes

16 inputs and 8
outputs

√ Source

AM402-CPU1608TP 8 10 MB 20 MB 512 KB

8 servo
axes, 4

positioning
axes

16 inputs and 8
outputs

√ Source

-9-

Contents

Product Model

Number
of Local

Expansion
Modules

Program
Storage
Space

Data
Storage
Space

Data
Stored

at Power
Failure

Motion
Control

Axes
High-speed I/O

Soft
Element

Output
Type

AM401-CPU1608TN 8 10 MB 20 MB 512 KB

4 servo
axes, 4

positioning
axes

16 inputs and 8
outputs

√ Sink

AM402-CPU1608TN 8 10 MB 20 MB 512 KB

8 servo
axes, 4

positioning
axes

16 inputs and 8
outputs

√ Sink

AM600-CPU1608TP 16 10 MB 20 MB 512 KB 32
16 inputs and 8

outputs
√ Source

AM600-CPU1608TN 16 10 MB 20 MB 512 KB 32
16 inputs and 8

outputs
√ Sink

AM610-CPU1608TP 16 10 MB 20 MB 512 KB X
16 inputs and 8

outputs
√ Source

AC802-0222-U0R0 X 128 MB 128 MB

5 MB
(external

UPS
required)

128 X X X

AC810-0122-U0R0 X 128 MB 128 MB

5 MB
(external

UPS
required)

256 X X X

Table 1-2 Communication characteristics of the CPU module

Product Model
Communication

EtherCAT
PROFIBUS

DP
CANopen/CANlink Modbus TCP Modbus (Serial Port)

AM401-CPU1608TP

1 channel
(maximum
of 128 slave

stations)

X
1 channel

(maximum of 8 slave
stations)

1 channel
(maximum of 63

slave stations)

1 channel (maximum
of 31 slave stations)

AM402-CPU1608TP

1 channel
(maximum
of 128 slave

stations)

X
1 channel

(maximum of 8
slave stations)

1 channel
(maximum of 63

slave stations)

1 channel (maximum
of 31 slave stations)

AM401-CPU1608TN

1 channel
(maximum
of 128 slave

stations)

X
1 channel

(maximum of 8
slave stations)

1 channel
(maximum of 63

slave stations)

1 channel (maximum
of 31 slave stations)

AM402-CPU1608TN

1 channel
(maximum
of 128 slave

stations)

X
1 channel

(maximum of 8
slave stations)

1 channel
(maximum of 63

slave stations)

1 channel (maximum
of 31 slave stations)

AM600-CPU1608TP

1 channel
(maximum
of 128 slave

stations)

X
1 channel

(maximum of 63
slave stations)

1 channel
(maximum of 63

slave stations)

2 channels
(maximum of 31
slave stations for

each)

AM600-CPU1608TN

1 channel
(maximum
of 128 slave

stations)

X
1 channel

(maximum of 63
slave stations)

1 channel
(maximum of 63

slave stations)

2 channels
(maximum of 31
slave stations for

each)

-10-

Contents

-10-

Product Model
Communication

EtherCAT
PROFIBUS

DP
CANopen/CANlink Modbus TCP Modbus (Serial Port)

AM610-CPU1608TP X

1 channel
(maximum
of 124 slave

stations)

X
1 channel

(maximum of 63
slave stations)

2 channels
(maximum of 31
slave stations for

each)

AC802-0222-U0R0

2 channels
(maximum
of 64 slave
stations)

X X
2 channels

(maximum of 63
slave stations)

2 channels
(maximum of 31
slave stations for

each)

AC810-0122-U0R0

2 channels
(maximum
of 128 slave

stations)

X X
2 channels

(maximum of 63
slave stations)

2 channels
(maximum of 31
slave stations for

each)

Note: The number of slave stations supported does not include the power module and stopper plate.

1.1.2 Product Configuration and Module Description

Inovance provides a rich range of medium-sized PLC products for users to select the required product
configuration according to the applications. Take the AM600 series PLC as an example. The AM600
includes two structures: AM600-CPU1608TP (EtherCAT+CANopen) and AM610-CPU1608TP (PROFIBUS DP).
The following are the typical system integration diagrams of the two structures.

Figure 1-1 AM610-CPU1608TP typical system integration diagram

-11-

Contents

-11-

Figure 1-2  AM600-CPU1608TP system integration diagram

-12-

Contents

The AM600 modules are classified into the power module, CPU module, remote communication modules
and local expansion modules based on functions, as described as follows.

Ordering Code Model Category Descriptions

01440010 AM600-PS2 Power module 220 V voltage input, 24 V/2 A output

01440028 AM401-CPU1608TP

CPU module

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

4-axis motion control, EtherCAT

Built-in 16 high-speed inputs, 8 high-speed outputs
Source output

01440029 AM402-CPU1608TP

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

8-axis motion control, EtherCAT

Built-in 16 high-speed inputs, 8 high-speed outputs

Source output

01440032 AM401-CPU1608TN

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

4-axis motion control, EtherCAT

Built-in 16 high-speed inputs, 8 high-speed outputs

Sink output

01440031 AM402-CPU1608TN

CPU module

1 x RS485, 1 x CANopen/CANlink, 1 x LAN

8-axis motion control, EtherCAT

Built-in 16 high-speed inputs, 8 high-speed outputs

Sink output

01440014 AM600-CPU1608TP

2 x RS485, 1 x CANopen/CANlink, 1 x LAN

Basic motion control, EtherCAT

Built-in 16 high-speed inputs, 8 high-speed outputs

Source output

01440016 AM610-CPU1608TP

2 x RS485, 1 x LAN

Basic motion control, PROFIBUS DP

Built-in 16 high-speed inputs, 8 high-speed outputs

Source output

01440038 AC810-0122-U0R0

Booksize
controller

2 x USB2.0, 2 x USB3.0

1 x RS485/RS232, 4 x LAN

Up to motion control of 256 axes, EtherCAT

Multi-functional expansion slot, built-in Mini-PCIE
expansion slot

01440101 AC802-0222-U0R0

2 x USB2.0, 2 x USB3.0

1 x RS485/RS232, 4 x LAN

Up to motion control of 256 axes, EtherCAT

 Built-in Mini-PCIE expansion slot

01440005 AM600-1600END DI module 16-channel DI module, 24 VDC input (source/sink)

01440017 AM600-0016ER

DO module

16-channel DO module, relay output

01440003 AM600-0016ETP 16-channel DO module, transistor output (source)

01440018 AM600-0016ETN 16-channel DO module, transistor output (sink)

01440006 AM600-4AD AI module 4-channel AD module, voltage/current analog input

01440007 AM600-4DA AO module 4-channel DA module, voltage/current analog output

01440012 AM600-RTU-DP
PROFIBUS DP
communication
module

PROFIBUS DP communication module

-13-

Contents

Ordering Code Model Category Descriptions

01440013 AM600-RTU-ECT
EtherCAT
communication
module

EtherCAT communication module

01440011 AM600-RTU-COP
CANopen
communication
module

CANopen communication module

1.1.3 System Application Process

The system application process is shown in the following figure. For module installation and wiring,
see the AM600 Series PLC Hardware Manual (CN, EN) and AC810 Series PLC Hardware Manual (only CN
currently).

Start

Install the modules

Carry out wiring

Connect the system power

Connect to the PC

Write the program and
parameters into the CPU

Locate the error

Run the program

End

Install the power, CPU, and expansion modules.

Finish wiring of the power module.
Finish wiring of the CPU and expansion modules.

Confirm the wiring is correct and the power supply meets with
required specifications, and the CPU module is in STOP state.
Then, switch on the power.

Connect the PC where the programming tool is installed to the CPU
module.

Write the program created with the programming tool and the related
parameters into the CPU module.

Ensure that the LEDs of the CPU module and ERR, SF and BF
indicators of other modules are off.
Use the programming tool to locate the error when an indicator is on
or blinks.

Set the CPU module to RUN state and verify that the RUN
indicator is on.

Confirmation

For installation of the
programming tool,
see section 1.2

Figure 1-3 Basic application flowchart of medium-sized PLCs

-14-

Contents

1.2 Overview of InoProShop

1.2.1 Brief Introduction

InoProShop is a programming configuration software for medium-sized PLCs. Developed based on
CoDeSys V3 (shorted as "CoDeSys"), InoProShop provides a complete configuration, programming,
commissioning, and monitoring environment for medium-sized PLCs with flexible processing on IEC
languages.

InoProShop is used to manage projects and devices, and supports the following configurations on
medium-sized PLCs:

9) CPU configuration

10) I/O module configuration

11) EtherCAT bus

12) PROFIBUS DP bus

13) CANopen/CANlink bus

14) Modbus/Modbus TCP bus

15) High-speed I/O

Besides programming, downloading, and commissioning, this software also provides the following
functions:

 ■ Standard programming (IEC 61131-3 compliant)

The software supports multiple programming languages, including structured test (ST), function
block diagram (FBD), instruction list (IL), ladder diagram (LD), sequential function chart (SFC), and
continuous function chart (CFC) of IEC61131-3 extended programming language.

 ■ Flexible function block (FB) library

The software supports full FB library and user-defined library.

 ■ Offline simulation

Users can complete program commissioning simulation without connecting the PLC hardware.

 ■ Intelligent error locating

The software quickly locates errors during pre-programming and programming and provides
diagnostics and logs.

 ■ Sampling tracking

The software can establish the timing diagram of process variables.

1.2.2 Connection Between InoProShop and Hardware

Connect the programming device to the PLC through Ethernet (such as hub or switch) or USB, write user
programs in the InoProShop, and download the program to the PLC to monitor the program and control
the PLC.

-15-

Contents

MFK

RUN/STOP

3940

2 1

C
N

5

C
N

1
 R

S485
C

N
2

D
P/C

A
N

C
N

3
E

therN
E

T
C

N
4

E
therC

A
T

CANERR
CANRUN
BF

SF
ERR
RUN 0 1 2 3 7654

2 765410 3

4 5 6 73210
I
II

Ethernet or USB cable

Figure 1-4 Connection between InoProShop and hardware

1.2.3 Acquisition and Installation Requirements

1 Software acquisition

Inovance InoProShop is available for free. You can obtain the installation file and related reference using
the following methods:

 ■ Obtain the software installation CD from Inovance distributors at all levels.

 ■ Access www.inovance.com, and download the software installation package for free.

Inovance is committed to continuous improvement of its products and documents. You are advised to
update software versions in time and refer to the latest documents when designing your applications.

2 Installation environment requirements

Use a desktop or laptop PC that meets the following requirements:

 ■ Operating system: Windows 7 or Windows 10; 64-bit operating system recommended

 ■ Memory: 4 GB or above

 ■ Available hard disk space: 5 GB or above

Connect the PC and the PLC as follows:

Connection Mode Cable Remarks

LAN network cable
(recommended)

One idle LAN port and one network
cable required on the local network

Long-distance connection between the PC and the PLC
is supported, and the interaction communication is
fast. For example, you can sit in the office and program
the PLC in the workshop.

USB cable
One USB cable, of which the end
connecting the PLC must be a Mini
USB connector

Currently, the AM400 and AM600 series support this
connection mode.

1.2.4 Installation Procedure

1 Preparation

If you install InoProShop for the first time, ensure that the available space in the destination partition of
the hard disk is above 5 GB; in this case, you can directly install the software.

If you need to upgrade InoProShop, back up your work files, uninstall the original InoProShop, restart the
PC, and then install the new InoProShop version.

http://www.inovance.cn

-16-

Contents

2 Installation

Locate the directory where the installation package is stored in the Windows Explorer, and double-click
the InoProShop (V*.*.*.*).exe file (V*.*.*.* is the InoProShop version. Ensure that you are installing the latest
version.)

The following preparation interface is displayed:

On the displayed interface, click Next.

-17-

Contents

Set the installation path, and click Next.

Select the features to be installed on the displayed interface and click Next. Keep the default selection if
you do not have special requirements.

-18-

Contents

On the displayed interface, click Next.

On the displayed interface, click Next.

-19-

Contents

The installation progress is displayed. Wait and click Finish when the following interface is displayed.

-20-

Contents

3 Language setting

Set the language you require from Main Menu > Options > International Settings > User interface
language.

1.2.5 Uninstallation

Use the typical method of uninstalling software in a Window system to uninstall InoProShop. The
procedure is as follows:

 ■ Exit InoProShop and ensure that the gateway is closed.

 ■ If the CoDeSys icon exists in the task bar of the operating system, right-click the icon and choose Exit
to close Gateway.

 ■ Choose Start > Control Panel.

 ■ Click Programs and Features.

 ■ Select InoProShop.

 ■ Right-click, and select Uninstall.

Chapter 2 Quick Start

2.1 Programming Environment Launching ...22

2.2 Typical Procedure for Writing a User Program..24

2.2.1 User System Configuration Operations .. 24

2.2.2 User Program Writing Operations .. 25

2.2.3 Linkage Configuration Between User Program Variables and Ports ... 27

2.2.4 Configuring the Execution Mode and Running Period of User Program ... 28

2.2.5 User Program Compiling and Login Download ... 28

2.3 Writing a Marquee Sample Project with InoProShop ...31

2.4 How to Log In to the Main Module ...36

2.4.1 Prerequisites and Operations of Main Module Login .. 36

2.4.2 Scanning Medium-Sized PLC in InoProShop ... 36

2.4.3 Solution to AM600 Scanning Failure ... 38

-22-

Chapter 2 Quick Start

2. Quick Start
2.1 Programming Environment Launching

1) Double-click the programming software icon on the desktop to launch the InoProShop
programming environment. The launch interface is as follows:

2) Click on the top left corner of the menu bar or choose File > New Project to create a project.
Select the project type and specify the project file name as well as storage path, shown as follows:

1 - Enter the project name; 2 - Select the storage path.
Click OK to open the standard project interface. You can select device type and programming language,
shown as follows:

-23-

Chapter 2 Quick Start

1 - Select the main module type; 2 - Select a familiar programming language.
Click OK to open the system configuration and programming interface. The commonly used buttons and
window layout are as follows:

1 - Compiling, login, and commissioning; 2 - Network configuration and hardware configuration; 3 - Port and program
variable linkage; 4 - Add user program unit; 5 - Configure task execution mode and period; 6 - Device information area

-24-

Chapter 2 Quick Start

2.2 Typical Procedure for Writing a User Program

If this is the first time you use Inovance medium-sized PLC, note that 5 steps are required to write and
commission a complete user program.

1) Configure the hardware system based on the hardware connection structure of the medium-sized
PLC application system.

 ■ If only the CPU main module and I/O expansion module are used, you only need to configure the
hardware: Place the "elements" of selected module type and model and installation order into
the "rack" on the InoProShop hardware configuration interface.

 ■ If the expansion racks are used, configure the bus first. Then, add a certain number of network
expansion modules according to the number of expansion racks, and add expansion modules
into each rack.

2) Write the user program according to the control procedure of the application system. During
programming, the variables are customized based on the data storage width and use scope, which
may be independent of hardware configuration.

3) Link the input port variable (I), output status (Q), or value (M) of each hardware port in the system
structure with the variables in the user program.

4) Configure the synchronization period of network communication (for example, the EtherCAT bus).
Configure the execution periods of user program units according to the instantaneity requirements of
tasks.

5) Log in to the medium-sized PLC in the InoProShop programming environment. Download the user
program, carry out simulated commissioning, and rectify faults until the program runs normally.

2.2.1 User System Configuration Operations

On the InoProShop main interface, double-click LocalBus Config in the left device tree to open the PLC
rack hardware configuration interface:

1 - Double-click to open the local expansion module configuration interface; 2 - Element library of the
expansion module.

-25-

Chapter 2 Quick Start

Double-click the required the modules in turn in the right expansion module library according to the
required module models and installation order, and drag the modules to the rack. To delete a module,
select it and press Del.

Take AM600 for example. A maximum of 16 expansion modules can be mounted to the rack, including 8
analog modules.

1. Click on the right side of the CPU unit in installation slot. Double-click the required I/O module in the expansion
module library window. Place the modules in turn.

2.2.2 User Program Writing Operations

Double-click PLC_PRG(PRG) in the left device tree to open the user programming interface. The
programming language is ST (selected in projection creation), shown as follows: Similar to C language,
every variable can be used only after declaration. After a program statement is written, when you press
Enter, the programming environment automatically displays a declaration prompt. When you press
OK, the variable declaration window automatically adds this statement. This simplifies the program
procedure.

-26-

Chapter 2 Quick Start

1- Variable declaration window; 2 - Programming window; 3 - Programming with ST language, and prompt
for confirming variable type after pressing Enter.

A programming example: Assign the value of the second variable to the first variable and progressively
increase the value.

1 - Examine whether compiling is correct in the information output window.

-27-

Chapter 2 Quick Start

2.2.3 Linkage Configuration Between User Program Variables and Ports

On the local bus configuration interface, link the hardware ports with variables in the user program. As
shown in the following figure, link the test_display variable with the output port of the first DO module.
The configuration procedure is as follows:

①

②

③

-28-

Chapter 2 Quick Start

2.2.4 Configuring the Execution Mode and Running Period of User Program

In the previous example, the sub-program is executed every 20 ms by default. If you need to change the
execution mode, for example, change it to repeated execution, scheduled execution, or execution at a
specified interval, perform the following operations:

1 - Execution mode, scanning interval

2.2.5 User Program Compiling and Login Download

After programming, the program needs to be complied. Verify the compiling operation and locate errors
based on the compiling information, and then repeat the operation until there is no error.

The compiling information is displayed in the following compiling information box:

-29-

Chapter 2 Quick Start

After confirming that no compiling error exists, click Online and the login button, shown as follows:

1 - Click the login button to log in to the AM600 to download and debug the programs

The following dialog box is displayed. Choose whether to create a project and continue download:

1 - After you click the login button, InoProShop displays a prompt to avoid misoperation.

Click Yes to connect the host computer to the device and retain the connection. The initial status is Stop,
shown as follows:

1 - Click the run icon to start the running of user program.

-30-

Chapter 2 Quick Start

Choose Debug > Start. The device enters the running state and starts to run the user program.

The following figure shows the monitoring interface of a running user program:

Check the first DO module behind AM600. You can see that the output status indicator cyclically counts in
a binary mode.

-31-

Chapter 2 Quick Start

2.3 Writing a Marquee Sample Project with InoProShop

1 Launch the InoPro Programming Environment

Create a project:

Click on the top left corner of the menu bar or choose File > New Project. Select the project type and
specify the project file name as well as storage path, shown as follows:

-32-

Chapter 2 Quick Start

2 Select a Device Type and Programming Language

Open the standard project interface. You can select the device type and programming language, shown as
follows:

Device: Select the main module model.

PLC_PRG in: Structured Text (ST)

3 System Configuration and Programming Interface

1 - Add user program unit; 2 - User program; 3 - Task configuration and program call

-33-

Chapter 2 Quick Start

4 Write the marquee sample program with ST

Double-click to launch the PLC_PRG.

1 - Program variable declaration; 2 - Circular 1-bit left shift program with ST

5 Linked PLC Output I/O

Left shift in_byte variable and eight output port links (Bit 0-Bit 7) of PLC. Observe the output indicator
status change.

1 - High-speed I/O definition; 2 - Output variable link

-34-

Chapter 2 Quick Start

1 - Linked I/O output

6 Simulation Debugging

1 - Log in to the download program; 2 - Start the simulation function.
Click Simulation to start the simulation function. You can view the IO shifting status without linking to
PLC.

-35-

Chapter 2 Quick Start

7 Download Program in Simulation Mode

Click Login to download program in simulation mode.

8 Run the PLC After Downloading

9 Monitor I/O change

1 - Circular 1-bit shift

-36-

Chapter 2 Quick Start

2.4 How to Log In to the Main Module

2.4.1 Prerequisites and Operations of Main Module Login

Main Module Login means that the InoProShop running on PC sets up communication with the
medium- sized PLC main module, so that user program can be run, downloaded, started/stopped, and
monitored. In addition, you can check and modify program parameters.

 ■ You can log in to a medium-sized PLC: through the LAN or USB.

 ■ The PC can be connected to the medium-sized PLC through a network cable in peer-to-peer mode,
or connected to multiple medium-sized PLCs through router or hub. Multiple PCs can also access the
same medium-sized PLC.

 ■ A PC can log in to the medium-sized PLC only when their IP addresses are in the same network
segment; otherwise, the InoProShop cannot detect the medium-sized PLC. For example, the default
IP address of AM600 is 192.168.1.88. If a PC's IP address is 192.168.1.xxx (xxx ranges from 1 to 254, but
is different from that in the IP address of AM600), the InoProShop can detect the AM600 and exchange
data with it. Then, you can download and monitor the user program. If the IP address of AM600 has
been changed to another network segment, the PC and AM600 cannot set up communication. In
this situation, restore the default IP address 192.168.1.88 of AM600, and change the PC's IP address
to 192.168.1.xxx. When a peer-to-peer connection is set up, change the IP address of AM600 to the
desired one.

 ■ To log in to the PLC through USB, connect the MiniUSB port. Wait for 20s to 60s until the device can be
detected.

Precautions of USB connection:

1) The USB drive is automatically installed during software installation. If not, you can find the file
named "<PLC series> user drive" in the Common folder under the installation directory.

Then update the drive in the Windows Device Manager. The drive is installed from the installation
directory. After the USB connection is successfully set up, the Windows Device Manager displays the
drive program installed.

2) If both USB connection and network connection are available, the network connection is used
because its network scanning speed is faster.

2.4.2 Scanning Medium-Sized PLC in InoProShop

The PC can log in to the medium-sized PLC through LAN. Taking AM600 for example, the connection is as
follows:

-37-

Chapter 2 Quick Start

In the InoProShop, double-click Device (AM600-CPU-1608TP/TN). The following interface is displayed:

Click Scan Network.... The following interface is displayed. In the left part of the window, click AM600-
CPU to show its introduction on the right part of the window.

The previous figure shows four controllers, which are displayed in two rows:

The first AC810 [003A]: It is in the network segment and named AC810. The last two digits "3A" in brackets
is the fourth bits in the IP address of AC810. "3A" is in hexadecimal format, and its decimal notation is 58.

The second AC810-A2 [002F]: It is another device in the network segment and named AC810-A2. After
logging in, you can modify the device name so that you can easily identify the devices when there are
multiple controllers.

Double-click the selected device, or select a device and click OK. The host computer is connected to the
device.

If the controller ID recorded in the project is different from the selected controller ID, the following
information may be displayed. To connect to the network, click Yes.

Yes

-38-

Chapter 2 Quick Start

2.4.3 Solution to AM600 Scanning Failure

If the InoProShop cannot detect AM600, the possible reasons and solutions are as follows:

1) The CoDeSys gateway is not started.

Verify that the gateway has been started and run scanning again:

1 - Check whether the CoDeSys gateway is running in the lower right task bar on PC (colorful display). If the gateway is
in stop state, click to start it.

2) The IP addresses of PC and AM600 are in different network segments.

Solution: Check whether the PC's IP address is in network segment 192.168.1.xxx. If not, modify the IP
address settings. Before modification, record the PC's IP address settings for later restoration.

 ■ Open the Resource Manager on the PC. Click Local Connection to check and modify the IP address
settings:

1 - Click Properties; 2 - Click Internet Protocol Version 4 (TCP/IPv4); 3 - View or change the IP address; 4 - Click OK.

 ■ Restore the default IP address 192.168.1.88 of AM600. After AM600 is powered on, slide the RUN/
STOP switch to STOP. Hold down the MFK button for at least 3s. AM600 restores the IP address of
the network interface to 192.168.1.88. Before the restoration, there are countdown reminder of such
information as "I.P." and numbers "10" to "0". During the countdown, you can press MKF again to
cancel the restoration.

The modified IP address takes effect immediately no matter whether you restore the default IP address of
AM600 or change the IP address using the InoProShop software tool.

-39-

Chapter 2 Quick Start

Once the scanning and network connection are successful, the following network status information is
displayed on the device scanning interface:

1 - Green indicates that the gateway is normally running; 2 - Green indicates that the controller has been scanned and
network connection is normal.

-40-

Chapter 2 Quick Start

3) When a LAN contains multiple AM600s and you have logged in to one controller, you may need to
verify whether the selected controller is correct:

On the Device page of InoProShop, click the System Setting tab and click the Identify Device button,
shown as follows:

-41-

Chapter 2 Quick Start

③

①

②

1 - Double-click Device. 2 - Switch to the System Setting tab. 3 - Click Sync To Local Date/Time. The 7-segment LED
of PLC selected on the Communication Setting tab page alternately blinks.

The two bits of 7-segment LED on the AM600 or AM610 you have logged in to alternately display 0, shown
as follows:

The LED stops blinking only when you click OK in the InoProShop pop-up dialog box, and the original
information is restored:

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Memo No. ___________

Date / /

Chapter 3 Network Settings

3.1 Device Configuration ..44

3.2 CPU Configuration ..51

3.3 EtherCAT Configuration ..74

3.4 Modbus Editor ...131

3.5 Using Free Protocols on COM Ports ...144

3.6 Modbus TCP Device Editor ...148

3.7 CANopen Network...158

3.8 CANlink 3.0 Configuration Editor ...178

3.9 PROFIBUS DP Bus ...196

3.10 HMI Communication Configuration...201

-44-

Chapter 3 Network Settings

3 Network Settings
3.1 Device Configuration

Device configuration is the first step of PLC programming. It involves two functions: network configuration
and hardware configuration. You can use the two functions to deploy the device.

 ■ Network Configuration

It is designed from the perspective of bus-type network topology, and is the entrance of device
configuration.

 ■ Hardware Configuration

It is used to add the expansion I/O modules of medium-sized PLC.

3.1.1 Network Configuration

After creating an InoProShop project, double-click the Network Configuration node in the left device
tree, shown as follows:

Figure 3-1 Network Configuration node
Double-click this node to open the Network Configuration interface and device list (as shown in
Figure 3-1). The network configuration interface displays the PLC currently used by the user program,
and the device list includes all the devices supported by PLC.

-45-

Chapter 3 Network Settings

Figure 3-2 Network Configuration

1 Configuring PLC as Master or Slave Device

When you click the PLC in network configuration, the master/slave stations supported by PLC are
displayed, shown as follows. Click the desired checkbox to enable the master/slave stations supported by
the CPU.

When a master station (except the CANlink master station) function is enabled for the CPU, the bus-type
topology is displayed. For example, the following figure shows the enabled EtherCAT master station:

 ■ Add slave station.

After a master station in CPU is enabled, you can add the slave station under the corresponding bus.
The slave station can be added by three methods (taking EtherCAT bus for example):

-46-

Chapter 3 Network Settings

-46-

1) Enable the EtherCAT master station function, and then select a slave station node under the EtherCAT
port node in Figure 3-1. Drag the node to the network configuration interface.

2) Enable the EtherCAT master station function, and then double-click a slave station node under the
EtherCAT port node in Figure 3-1.

3) Double-click a slave station node under the EtherCAT port node in the device list. If you use this
method, the internal master station function of the CPU will be enabled first.

To add I/O modules for an added slave station (slave station for AM600), double-click the device to
open the Hardware Configuration interface.

 ■ View basic device information.

Click a device on the Network Configuration interface, and you can see the basic device information
in Config Device Information Output > DeviceDefaultInfoList.

-47-

Chapter 3 Network Settings

 ■ Open the device configuration interface.

Right-click the EtherCAT slave station in network configuration, and choose Open Editor Page from
the shortcut menu, shown as follows:

-48-

Chapter 3 Network Settings

 ■ Insert the EtherCAT slave station.

Right-click the EtherCAT slave station in network configuration, and choose Insert EtherCAT Device
from the shortcut menu, shown as follows:

 ■ Config devices can be copied, deleted, and added. For details, see Config Device Common Operations.

 ■ Edit configuration.

If the network configuration includes repeated Modbus slave station addresses or ModubsTCP slave
station IP addresses, the repeat information is displayed in the output box during project compiling.
For details, see Config Compiling Error Locating.

2 Device Information List

To open the device information list, choose View > Config Device Information View.
The config device basic information is displayed, including slot number, device name,
and description. The information is minimized at the bottom of the interface by default
(). You need to open the list manually by
clicking it.

Figure 3-3 Device Information List
 ■ Slot number

The slot numbers match the slot numbers in Hardware Configuration. The numbers of the slots on
rack and on the communication slave station both start from 1. Slot -1 matches the AM600 power
module, and slot 0 matches the CPU.

-49-

Chapter 3 Network Settings

 ■ Device name

The device names are the same as the device names in the left device view.

 ■ Description

The basic description of devices, including operating indicators and functions.

To locate a device in the configuration interface, click a row in the device list. To open the
configuration interface of a device, double-click a row.

3 Config Device Common Operations

The common operations of config devices include copy, paste, cancel, restore, delete, import EDS, GSD,
and ECT files, zoom in, and zoom out.

NOTE

1) The copy, paste, delete, cancel, and restore operations only apply to I/O modules on the
Hardware Configuration interface and to slave stations on the Network Configuration interface.

2) If you perform copy, paste, or delete operation on the slave station on the network configuration
interface, the same operation is also performed on its modules.

3) The CPU of AM600-CPU1608TP supports the import of EDS and ECT files, but does not support the
import of GSD files. The CPU of AM610-CPU1608TP supports only the import of GSD files.

 ■ Import EDS files: The network device list contains some CANopen devices by default. If you need to
add other CANopen devices, import the corresponding standard EDS file. After the file is imported,
the device is added to the CAN port node in the network device list. If the imported device is
from Inovance, it will be displayed under the Inovance node; otherwise, it is displayed under the
third- party vendor node.

 ■ Import GSD files: The network device list contains some DP devices by default. If you need to add
other DP devices, import the corresponding standard GSD file. After the file is imported, the device is
added to the DP port node in the network device list. If the imported device is from Inovance, it will
be displayed under the Inovance node; otherwise, it is displayed under the third-party vendor node.

 ■ Import ECT files: The network device list contains some EtherCAT devices by default. If you need to
add other EtherCAT devices, import the corresponding standard EtherCAT xml (*.xml) file. After the file
is imported, the device is added to the EtherCAT port node in the network device list. If the imported
device is from Inovance, it will be displayed under the Inovance node; otherwise, it is displayed under
the third-party vendor node.

3.1.2 Hardware Configuration

The hardware configuration uses the rack and slot used in device configuration to simulate the field
device modular configuration. Hardware configuration applies to the I/O modules of medium-sized PLC
products.

From the aspect of configuration procedure, to add a remote I/O module, you need to configure the
communication module in Network Configuration first, and then configure the I/O module in Hardware
Configuration; to add a local I/O module, directly open the Hardware Configuration to perform operations.
Hardware Configuration supports multi-bus I/O configuration, depending on the used CPU model.

1 Opening the Hardware Configuration Interface

Except Modbus and Modbus TCP devices, other bus-type devices should have matching Hardware
Configuration interfaces.

You can access the Hardware Configuration interface in two ways:

-50-

Chapter 3 Network Settings

1) Double-click a device on the Network Configuration interface.

2) Double-click a bus node under the Network Configuration node in the left device tree, shown as
follows.

By default, the LocalBus Config, namely, local bus configuration node, is available. Double-click it to
perform the local module configuration:

In addition, the Input/Output Module List is displayed on the right.

2 Switching Bus

You can switch the bus of hardware configuration in two ways:

1) Double-click a bus node under the Network Configuration node in the left device tree.

2) Select another bus type in the current Hardware Configuration interface, shown as follows:

3 Adding Module

You can add I/O modules in three ways:

1) Double-click an idle slot on the rack. In the pop-up module list, double-click a module to add it.

2) Select a node from the right module list, and drag it to an idle slot.

3) Select a rack (blue part in the figure) or device, and double-click a device in the right module list.

-51-

Chapter 3 Network Settings

Then you can add the devices to the idle slots in order. If you click an idle slot, the selected device is
added to this slot.

4 Dragging Module

Select a module and drag it to the target slot. By using the dragging function, you can exchange the
locations of two modules or move a module to an idle slot. However, the modules in the main rack and
expansion rack cannot be interchanged.

3.1.3 Configuration Compiling Error Locating

The config device defines configuration rules and error detection mechanism, for example, repeated
station addresses of MODBUS devices or IP addresses of TCP devices in Network Configuration. If the slave
station in the expansion rack of Hardware Configuration is not connected to I/O module, a configuration
compiling error will be reported.

If a configuration error occurs during compiling, the InoProShop message box will display the error.
Double-click the error list to go to the corresponding configuration interface and the red rectangular box
blinks three times, shown as follows:

3.2 CPU Configuration

The CPU module is the main module of a medium-sized PLC. The CPU is configured based on the control
system requirements of the PLC hardware, to complete the configurations of PLC and its control system.
A medium-sized PLC supports EtherCAT bus, PROFIBUS DP, Modbus RTU, CAN bus, and Modbus TCP, and
also supports high-speed I/O. Therefore, to complete all CPU configurations, you need to set the bus
parameters according to the PLC hardware network configuration.

For example, the CPU module of AM600 has built-in high-speed I/O, and local I/O modules can be
configured. In addition, on the CPU configuration interface, you can set the CPU system parameters and
CPU firmware upgrade.

-52-

Chapter 3 Network Settings

3.2.1 General CPU Configuration Procedure

1) Design the entire CPU hardware network structure.

2) Activate the corresponding bus in Network Configuration and add the slave stations corresponding
to the bus. Currently, the CPU supports EtherCAT bus, DP bus, CANopen, CANlink, Modbus RTU, and
Modbus TCP.

3) For the EtherCAT AM600 slave station, CANopen AM600 slave station, or DP AM600 slave station, add
I/ O modules to Hardware Configuration.

4) Configure the master station, slave station, and module configuration parameters corresponding to
the bus.

By default, the AM600 CPU has the high-speed I/O function. Each CPU can be configured with up to 16
local I/O modules. In addition, you need to configure the CPU system parameters, PLC I/O update, PLC bus
task, PLC user management, log, upgrade, and tasks according to the actual requirements.

To know the parameter settings of buses and their corresponding slave stations, see the chapters of the
buses. For the built-in functions of Codesys, such as PLC I/O update, PLC bus task, PLC user management,
log, and tasks, see the Codesys software help. In this document, the CPU configuration mainly involves the
functions of medium-sized PLC: CPU parameter configuration, I/O module configuration, and high- speed
I/O configuration.

3.2.2 CPU Parameter Configurations

1 System Configurations

System settings include the configurations of downtime caused by CPU fault, location retaining upon
outage, network address, and system time, shown as follows:

Figure 3-4 System settings dialog box

file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\ss
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\ss
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\ss
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\ss
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\ss
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\ss
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11
file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11

-53-

Chapter 3 Network Settings

Operating mode in fault

 ■ Stopped On Configuration Failure: Whether the CPU stops running when configurations are
inconsistent, for example, when the configured I/O module mounted to the CPU does not match the
physically connected I/O module.

 ■ Stopped On System Failure: Whether the CPU stops running when an system error occurs, for
example, when interrupt error or stack overflow occurs.

 ■ Stopped on Flash Failure: Whether the CPU stops running when a Flash error occurs. This function is
unavailable currently.

 ■ Stopped on SD Card Failure: Whether the CPU stops running when an SD card error occurs, for
example, when the SD card memory is used up or SD card is lost. This function is unavailable
currently.

Power-down Save

 ■ Saved Location: Sets the data saving location upon power failure, including local memory and SD
card. A maximum of 512 KB data can be stored upon power failure.

NOTE

When you set the saved location as SD card, ensure that an SD card is available; otherwise, data will
be lost upon power failure.

Network

 ■ LAN0: indicates the network interface name used by the PLC for Ethernet communication. AM600 and
AM400 have only one Ethernet interface, and AC800 has two Ethernet interfaces. The network names
vary with PLCs. You can configure differentiated network information according to network interface
configurations.

 ■ Use the following IP: The IP address of PLC can be manually modified, or automatically obtained. This
configuration is used to manually modify the PLC network information.

 ■ Automatically obtained IP address: The IP address of the PLC is assigned by a router or switch. Note:
This function is available only for AC800.

 ■ IP Address: indicates the IP address of PLC.

 ■ Subnet Mask: indicates the subnet mask of PLC.

 ■ Gateway: sets the gateway for PLC. Note: This function is available only for AC800.

 ■ Read: reads the IP address and subnet mask of PLC, which are displayed in the IP address and subnet
mask edit boxes.

 ■ Write: writes the IP address and subnet mask in the edit boxes into PLC. If you have logged in and
connected to the network, you will be logged out. In this situation, you need to re-log in. If the USB
connection is used, you do not need to re-connect the device.

NOTE

When the IP address needs to be read and written, select the PLC to be read and written in the
Communication Settings tab. In addition, the IP address and subnet mask to be written must
comply with the related standards.

 ■ Identify Device: identifies the PLC to be connected. After you configure PLC scanning on the
Communication Settings tab, multiple PLCs may be detected. After selecting one PLC, click this
button. Then the two digits of the 7-segment LED on the PLC panel will alternately display 0, as shown
in Figure 3-5.

file:///C:\Users\dell\AppData\Local\Temp\notesE8DBF2\11

-54-

Chapter 3 Network Settings

Figure 3-5  PLC 7-segment LED in Identifying state
Moreover, the software tool InoProShop displays the dialog box shown in Figure 3-6. Close the dialog box
to complete the identification, and then the 7-segment LED restores the default state.

Figure 3-6  Identifying device
RTC configuration

 ■ PLC Time: displays the current PLC time.

 ■ Read: reads the PLC time.

 ■ Write: writes the current date and time set on PLC. The current date and time are displayed in the left
edit boxes.

 ■ Sync To Local Date/Time: writes the current date and time from the PC to PLC.

NOTE

When the system writing PLC time or synchronizing local date/time to PLC, the PLC may be affected,
for example, the bus synchronization may be affected. Therefore, before writing the PLC time, ensure
that the PLC is in Stop state. It is recommended to hot reset the PLC after the time is written.

Time Zone

 ■ Time Zone: reads the PLC time zone. For example, the time zone of Beijing is UTC+8.

 ■ Read: reads the time zone of PLC.

 ■ Write: writes the time zone selected for PLC.

-55-

Chapter 3 Network Settings

2 Upgrade

The upgrade interface is used for the upgrade of PLC firmware, as shown in Figure 3-7. The PLC firmware
upgrade package provides the software data for upgrade, which may include UBOOT, Device Tree, kernel,
and system program. Generally, the upgrade package includes only the system program.

NOTE

The upgrade function is unavailable. Use the InoProShop tool to perform an upgrade.

Figure 3-7 Upgrade dialog box

PLC Information

 ■ PLC Model: AM600 or AM610

 ■ Firmware Version: firmware version of PLC, for example, 1.2.3.0

 ■ Detailed Version: detailed version information about the PLC, which may include UBOOT, Device Tree,
kernel, and system program, as shown in Figure 3-8. If the PLC firmware has not been upgraded, the
version information may not be included.

 ■ Get PLC Information: gets PLC model and firmware information. If the PLC firmware has not been
upgraded, PLC information may not be obtained.

Firmware Upgrade

 ■ Firmware Package: sets the firmware upgrade package, with the file name extension .upgrade.

 ■ Compatible Device: displays the devices compatible with the firmware upgrade package. The upgrade
can be performed only when the device is compatible with the PLC model.

 ■ Firmware Version: displays the firmware version of the upgrade package.

 ■ Firmware In Details: gets detailed information about the firmware upgrade package, shown as
follows:

-56-

Chapter 3 Network Settings

Figure 3-8 Firmware detailed information dialog box

 ■ Upgrade: starts the firmware upgrade. Before performing the upgrade, the system checks the device
type and upgrade firmware file version. If the upgrade firmware version is later than the PLC firmware
version, the upgrade is performed. If the versions are the same, the upgrade is not performed. If the
upgrade firmware version is earlier than the PLC firmware version, the upgrade is performed only
after confirmation.

NOTE

 ◆ Before the upgrade, scan the device to be upgraded in the Communication Settings interface
and select the PLC to be upgraded.

 ◆ Do not power off the device during the upgrade; otherwise, unrecoverable system faults may
occur.

 ◆ The upgrade will last about two minutes. After the upgrade, the device automatically restarts.

 ◆ After the restart (upgrade completed), the 7-segment LED displays 00 or dynamically changing
digits.

 ◆ After the upgrade, the PLC device name may be changed. Scan the device again.

After the upgrade, display and verify that the PLC information and detailed version information are
consistent with the firmware version and detailed information, as shown in Figure 3-9:

1 - Verify that the firmware information and PLC information are consistent.

Figure 3-9 Verify upgrade

-57-

Chapter 3 Network Settings

3 Information

The PLC basic information is displayed, including Name, Vendor, Categories, Type, ID, Version, Order
Number, Description, and Image, as shown in Figure 3-9.

Moreover, after you log in, the Information interface displays the PCB software version of the CPU and
logic software version. The PCB software version is the CPU system program version, and the logic
software version is the FPGA software version within the CPU.

Figure 3-10 CPU information

3.2.3 I/O Module Configurations

Five types of I/O modules are available:

Digital input (DI), digital output (DO), analog input (AD), digital output (DA), and temperature.

Digital output modules are classified into three types: relay output (ERN type), NPN output (ETN type),
and PNP output (ETP type).

Digital input and output include 16-channel and 32-channel.

The temperature module includes 4TC (4-channel temperature detection module, supporting
thermocouple), 8TC (8-channel temperature detection module, supporting thermocouple), and 4PT
(4-channel temperature detection module, supporting thermocouple).

1 Digital Input Module

There is no module parameter setting for digital input module. Only the I/O mapping, status, and
information interfaces are available. You only need to map the I/O variables on the I/O mapping interface
to obtain the digital input values. The 16-channel digital input module is used as an example here.

1) DI16 I/O mapping

DI16 is a 16-bit digital input module. As shown in Figure 3-11, on the I/O mapping interface, each bit or
every eight bits can be mapped to one variable to obtain the input value. For details, click the I/O Mapping
link.

file:///C:/Users/c3350/Desktop/%25e4%25b8%25ad%25e5%259e%258bPLC%25e7%25bc%2596%25e7%25a8%258b%25e8%25bd%25af%25e4%25bb%25b6%25e6%2589%258b%25e5%2586%258c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-58-

Chapter 3 Network Settings

Figure 3-11 DI16 I/O mapping dialog box
2) Information

The DI16 module basic information is displayed, including Name, Vendor, Categories, Type, ID, Version,
Order Number, Description, and Image, as shown in Figure 3-12.

Moreover, after you log in, the Information interface displays the DI module logic software version, which
is the FPGA software version within the DI module.

Figure 3-12 DI information

2 Digital Output Module

There is no module parameter setting for digital output module. Only the I/O mapping, Status, and
Information interfaces are available. You only need to map the I/O variables on the I/O mapping interface
and output the mapped variable values to the digital output module. The digital output includes
16-channel and 32-channel. They have similar I/O mapping interfaces. The 16-channel digital output
module is used as an example here.

-59-

Chapter 3 Network Settings

1) DO16 I/O mapping

DO16 is a 16-bit digital input module. As shown in Figure 3-13, on the I/O mapping interface, each bit
or every eight bits can be mapped to one variable to output the variable values. For details, click the
I/O Mapping link.

Figure 3-13 DO16 I/O mapping dialog box
2) Information

The DO16 module basic information is displayed, including Name, Vendor, Categories, Type, ID,
Version, Module ID, Description, Order Number, and Image, as shown in Figure 3-14.

Moreover, after you log in, the Information interface displays the DO module logic software version,
which is the FPGA software version within the DO module.

Figure 3-14 DO information

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-60-

Chapter 3 Network Settings

3 Analog Input Module

1) General settings

Analog input module includes four channels, each of which has independent parameter settings and
I/O mapping register (16-bit) settings. The following is the description of one channel in each module.

Figure 3-15 General settings of analog input module
 ■ Module diagnosis upwards reported: Whether to report the module faults to the parent device (such

as CPU and remote module slave station). If the faults are configured to be reported and the parent
device is configured with Stopped On Failure, the parent device will stop the running of the device.

 ■ Enable access: Whether to activate the channel. The channel is available only after it is activated.

 ■ Channel diagnosis upwards reported: Whether to report the channel faults to the parent device (such
as CPU and remote module slave station). If the faults are configured to be reported and the parent
device is configured with Stopped On Failure, the parent device will stop the running of the device.

 ■ AD Conversion Mode: Conversion mode of the analog input. This setting specifies the channel input
conversion type, conversion value range, and the mappings between conversion types and digital
values, shown as follows:

Table 3-1 Mappings between analog values of analog input and digital values

Rated Input Range Rated Digital Value Input Limit Range Limiting Digital Value

Analog
voltage input

-10 V to +10 V -20000 to 20000 -11 V to 11 V -22,000 to +22,000

0 V to +10 V 0 to 20000 -0.5 V to 10.5 V -1000 to +21,000

-5 V to 5 V -20000 to 20000 -5.5 V to 5.5 V -22,000 to +22,000

0 V to 5 V 0 to 20000 -0.25 V to 5.25 V -1000 to +21,000

1 V to 5 V 0 to 20000 0.8 V to 5.2 V -1000 to +21,000

Analog
current input

-20 mA to 20 mA -20000 to 20000 -22 mA to 22 mA -22,000 to +22,000

0 mA to 20 mA 0 to 20000 -1 mA to 21 mA -1000 to +21,000

4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA -1000 to +21,000

-61-

Chapter 3 Network Settings

 ■ Filter Parameter: Filter time of the analog input channel, ranging from 1 ms to 255 ms.

 ■ Offline Sign: Whether to detect the offline state of analog input channel. The system cannot
distinguish the input value 0 and offline state of the analog input module, so all values in the
conversion mode range, including 0, cannot activate the offline sign.

 ■ Overflow Sign: Whether to detect overflow of the analog input channel.

 ■ Peak Value Keeping: Whether to keep the peak value input of the analog input channel.

2) AI4 I/O mapping

AI4 is 4-channel analog input. Each channel matches a 16-digit integer. For the mappings between
analog values and digital values, see General Settings of Analog Input. On this interface, each 16-digit
integer can be mapped to a variable to obtain the digital value matching an analog value of input
channel. For details, click I/O Mapping.

Figure 3-16 AI4 I/O mapping dialog box

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-62-

Chapter 3 Network Settings

3) Information

The AI4 module basic information is displayed, including Name, Vendor, Categories, Type, ID, Version,
Module ID, Description, Order Number, and Image.

Moreover, after you log in, the Information interface displays the PCB software version and logic
software version of the AI4 module. The PCB software version is the embedded software version of
AI4 and the logic software version is the FPGA software version within the AI4 module.

Figure 3-17 AI4 information

4 Analog Output Module

1) General settings

Analog output module includes four channels, each of which has independent parameter settings
and I/ O mapping register (16-bit) settings. The following is the description of one channel in each
module.

-63-

Chapter 3 Network Settings

Figure 3-18 General settings of analog output module
 ■ Module diagnosis upwards reported: Whether to report the module faults to the parent device (such

as CPU and remote module slave station). If the faults are configured to be reported and the parent
device is configured with Stopped On Failure, the parent device will stop the running of the device.

 ■ Enable access: Whether to activate the channel. The channel is available only after it is activated.

 ■ Channel diagnosis upwards reported: Whether to report the channel faults to the parent device (such
as CPU and remote module slave station). If the faults are configured to be reported and the parent
device is configured with Stopped On Failure, the parent device will stop the running of the device.

 ■ Conversion Mode: Conversion mode of the analog output. This setting specifies the channel output
conversion type, conversion value range, and the mappings between conversion types and digital
values, shown as follows:

-64-

Chapter 3 Network Settings

Table 3-2 Mappings between analog values of analog output and digital values

Rated Output Range Rated Digital Value Output Limit Range Limiting Digital Value

Analog
Voltage
Output

-10 V to +10 V -20000 to 20000 -11 V to 11 V -22,000 to +22,000

0 V to 10 V 0 to 20000 -0.5 V to 10.5 V -1000 to +21,000

-5 V to 5 V -20000 to 20000 -5.5 V to 5.5 V -22,000 to +22,000

0 V to 5 V 0 to 20000 -0.25 V to 5.25 V -1000 to +21,000

1 V to 5 V 0 to 20000 0.8 V to 5.2 V -1000 to +21,000

Analog current
output

0 mA to 20 mA 0 to 20000 0 mA to 21 mA 0 to +21,000

4 mA to 20 mA 0 to 20000 3.2 mA to 20.8 mA -1000 to +21,000

 ■ State Output After Stop: Sets the output retaining value after the module stops running.

 ■ Output zero: Always outputs 0 after the module stops running.

 ■ Output last value: Always outputs the last value after the module stops running.

 ■ Output preset value: Always outputs the preset value after the module stops running. The preset
value can be an analog value or a digital value. The analog values and digital values have the mapping
relationship. If the analog or digital value is changed, its corresponding digital or analog value is also
changed. The preset value range depends on the conversion mode. For details, see the description of
conversion mode.

2) AO4 I/O mapping

AO4 is 4-channel analog input. Each channel matches a 16-digit integer. For the mappings between
analog values and digital values, see General Settings of Analog Output. On this interface, each 16-
bit integer can be mapped to a variable, and this variable is output to the current channel. Then the
analog output module converts the variable into the analog value for output. For details, click I/O
Mapping.

Figure 3-19 AO4 I/O mapping dialog box

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm
file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-65-

Chapter 3 Network Settings

3) Information

The AO4 module basic information is displayed, including Name, Vendor, Categories, Type, ID,
Version, Module ID, Description, Order Number, and Image.

Moreover, after you log in, the Information interface displays the PCB software version and logic
software version of the AO4 module. The PCB software version is the embedded software version of
AO4 and the logic software version is the FPGA software version within the AO4 module.

Figure 3-20 AO4 information

5 Temperature Module

The temperature module includes 4TC (4-channel temperature detection module, supporting
thermocouple), 8TC (8-channel temperature detection module, supporting thermocouple), and 4PT
(4-channel temperature detection module, supporting thermocouple). It has the corresponding general
settings and channel settings.

General settings include the unit type and sample cycle of the temperature module. Channel settings
include the sensor type, filter time, overflow, and temperature offset of each channel.

1) General settings

The temperature module settings vary with the module type. The 4TC and 8TC modules support the
cold junction compensation function, but 4PT does not. In addition, 8TC supports outer cold junction
compensation, but 4TC does not. The following figure shows the configuration interface of 8TC.

-66-

Chapter 3 Network Settings

Figure 3-21 8TC general settings dialog box

 ■ Module diagnosis upwards reported: Whether to report the module faults to the parent device (such
as CPU and remote module slave station). If the faults are configured to be reported and the parent
device is configured with Stopped On Failure, the parent device will stop the running of the device.

 ■ Cold Junction Compensation: Selects the cold junction compensation mode. Only the 8TC supports
outer cold junction compensation, and 8TC uses channel 7 (the last channel) for the input of outer
cold junction compensation.

 ■ Temperature Unit: Sets the input unit used by temperature module, including Celsius and Fahrenheit.

 ■ Sample Cycle: Sets the sample cycle used by the temperature module, including 250 ms, 500 ms, and
1000 ms.

2) Channel settings

Different types of modules support different numbers of channels. 4TC and 4PT support 4 channels,
and 8TC supports 8 channels. The channels have similar parameter settings. The following is the
description for one channel. The following figure shows the channel setting interface of 8TC.

Figure 3-22 Temperature module channel settings dialog box

 ■ Enable access: Whether to activate the channel. The channel is available only after it is activated.

 ■ Channel diagnosis upwards reported: Whether to report the channel faults to the parent device (such
as CPU and remote module slave station). If the faults are configured to be reported and the parent
device is configured with Stopped On Failure, the parent device will stop the running of the device.

 ■ Default: Restores the default settings of the channel.

-67-

Chapter 3 Network Settings

 ■ Sensor Type: The sensor type and specifications of 8TC and 4TC are listed in the following table. By
default, the K sensor is used.

Table 3-3 Sensor type and specifications of 8TC and 4TC

Item Sensor Name Temperature Range (ºC) Temperature Range (ºF)

Thermocouple

B 250ºC to 1800ºC 482ºF to 3272ºF

E -270ºC to 1000ºC -454ºF to 1832ºF

N -200ºC to 1300ºC -328ºF to 2372ºF

J -210ºC to 1200ºC -346ºF to 2192ºF

K -270ºC to 1372ºC -454ºF to 2502ºF

R -50ºC to 1768ºC -58ºF to 3214ºF

S -50ºC to 1768ºC -58ºF to 3214ºF

T -270ºC to 400ºC -454ºF to 752ºF

Table 3-4 4PT specifications

Item Sensor Name Temperature Range (ºC) Temperature Range (ºF)

Thermal
Resistance

Pt100 -200ºC to 850ºC -328ºF to 1562ºF

Pt500 -200ºC to 850ºC -328ºF to 1562ºF

Pt1000 -200ºC to 850ºC -328ºF to 1562ºF

Cu100 -50ºC to 150ºC -58ºF to 302ºF

 ■ Filter Time: Filter time of the temperature module when using this channel, ranging from 0 ms to
100 ms. The default value is 5 ms.

 ■ Overflow Detect: Enables overflow detection for the channel. If the temperature is beyond the
specified range, an overflow fault is reported. For the temperature range, see Table 3-3.

 ■ Enable Offset: Sets the offset compensation for the temperature module, ranging from -204.8 to
204.7.

 ■ Sensor Offline Detect: Enables offset alarming of the sensor.

3) I/O mapping

The numbers of included channels and I/O mappings vary with the temperature module type. The
following figure shows the I/O mapping interface of 4PT. The parameter value of each channel is the
temperature value. For details, click I/O Mapping.

Figure 3-23 Temperature I/O mapping dialog box

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-68-

Chapter 3 Network Settings

4) Information

The temperature module basic information is displayed, including Name, Vendor, Categories, Type,
ID, Version, Module ID, Description, Order Number, and Image.

Moreover, after you log in, the Information interface displays the PCB software version and logic
software version of the temperature module. The PCB software version is the embedded software
version of the temperature module and the logic software version is the FPGA software version within
the temperature module.

Figure 3-24 Temperature module information interface

3.2.4 High-Speed I/O Configuration

Click the HIGH_SPEED_IO option in the Device interface to display the HSIO parameter settings interface.
On this interface, you can configure the high-speed I/O function and its parameters, including:

(1) High-speed counter

(2) High-speed output

(3) High-speed input interrupt

-69-

Chapter 3 Network Settings

1 High-Speed Counter

1. The high-speed counter function parameters include Mode, Coincident Output, and External Trigger.
The counter mode includes single phase counter, AB phase counter, CW/CCW counter, and internal clock
counter.

Taking Counter 0 for example (counter numbers range from 0 to 7), the configuration procedure is as
follows:

1) Select Counter 0.

2) Set the high-speed counter mode:

Single phase counter: receives pulse signals from external single-phase encoders. It occupies only the
hardware port X0.

AB phase counter: receives pulse signals from external AB phase. AB can also be set to multiple 4. It
occupies hardware ports X0 and X1.

CW/CCW phase counter: receives pulse signals from external CW/CCW phase. It occupies hardware
ports X0 and X1.

-70-

Chapter 3 Network Settings

Internal clock: uses the internal pulse signals generated periodically by the software as the pulse
signals of counter 0, supporting 1 μs, 10 μs, 100 μs, and 1 ms.

3) Coincident Output:

When the counter of high-speed I/O reaches the specified value, the corresponding hardware output
port will output the matching level signals. When this function is enabled, the HC_EnableInterrupt
and HC_ SetCompare/HC_SetCompareM functions need to be invoked.

4) External Trigger:

When the external trigger pin is enabled, the high-speed counter latch and pulse width measurement
functions are available. The counter latch function needs to invoke HC_TouchProbe and the pulse
width measurement function needs to invoke HC_MeasurePulseWidth.

5) Filter Time:

Set the filter time of the high-speed counter interface. The default value is 2 μs.

2. Instantiation high-speed counter, with the data type COUNTER_REF

Take counter 0 as an example:

1) Default name of counter 0 instantiation: HS_Counter0

2) Counter mode:

 ■ Linear counter: Count between the maximum and minimum values. The counter stops when the
count up reaches the maximum or the count down reaches the minimum, and the overflow sign takes
effect.

 ■ Ring count: Used together with HC_SetRing.

Count between the maximum and minimum values. When count up exceeds the maximum, the value
skips to the minimum. When count down exceeds the minimum, the value skips to the maximum.

-71-

Chapter 3 Network Settings

3) External Trigger:

When the input level of X8 is effective, you can set the counter function. For example, configure X8
as the signal of disabling counter 0. You can also disable the preset and counter latch functions of
counter 0.

2 High-Speed Pulse Output

1. Configure the high-speed pulse output function, including output pulse mode (pulse + direction,
CW/ CCW) and home mode.

Take axis 0 as an example (axis numbers range from 0 to 3):

1) Check Axis 0.

2) Configure the high-speed pulse output mode:

-72-

Chapter 3 Network Settings

Pulse
Command

Format

Pulse + direction

Forward Inverse

Positive

Negative

Pulse
Command

Format

CW/CCW

Forward Inverse

Positive

3) Home method

Methods 0 to 3 are supported. For details, see the home diagram.

2. Axis instantiation, with data type HS_AXIS_REF

Take axis 0 as an example:

 ■ Default name of axis 0 instantiation: HS_Axis0

 ■ Stroke Limit: soft limit

 ■ Speed Limit: limits the maximum speed

 ■ Bias Speed: baseline speed when pulse is started

 ■ Acc Method: trapezoid and S curve

3. Home parameter settings, including home speed and creep speed

Used together with the MC_Home_P function.

4. Home method diagram

3 High-Speed Input Interrupt

For example:

1) Select high-speed input interrupt X2.

Select X2 edge interrupt: raising edge, falling edge, and both raising and falling edges.

-73-

Chapter 3 Network Settings

2) Configure interrupt task:

Launch the HC_EnableInterrupt function to add the X2 interrupt task. When the raising edge signal of
X2 takes effect, the program in the interrupt task starts to run.

4 High-Speed I/O Library

1 - Add a library in the library manager; 2 - Add a new high-speed I/O library; 3 - The functions of the new high-speed
I/ O library are displayed.

-74-

Chapter 3 Network Settings

3.3 EtherCAT Configuration

3.3.1 Overview

EtherCAT is an open industrial field technology over the Ethernet. It features short communication update
interval, low synchronization jitter, and low hardware cost. EtherCAT supports the linear, tree, start, and
hybrid topologies. EtherCAT slave stations must use dedicated communication chipset ESC, and EtherCAT
master stations can use a standard Ethernet controller.

For more information about EtherCAT working mechanism and technologies, see EtherCAT - Industrial
Ethernet Fieldbus and Its Drive Design or log in to the official website of EtherCAT Technical Committee at
https://www.EtherCAT.org.

3.3.2 Common Functions

1 Installing Device

EtherCAT device installation is to import the device description file (with file name extension .XML)
in compliance with ETG (EtherCAT Technical Committee) standards into the programming software
InoProShop. After the software parses and processes the file, it generates the EtherCAT config devices that
can be added and deleted by users. The InoProShop integrates all EtherCAT slave stations of Inovance,
and you do not need to install them. If you need to use third-party EtherCAT devices, install the device
description files provided by the third-party vendors.

Two installation methods are available: installation on the Network Configuration interface and
installation by using menu tools. The procedures are as follows:

 ■ Installation on the Network Configuration interface

1) Click Import ECT file. The following dialog box is displayed:

https://www.ethercat.org.cn

-75-

Chapter 3 Network Settings

2) Select an XML file and click Open.

 ■ Installation by using menu tools

1) Choose Tools > Device Repository.

2) In the pop-up dialog box, click Install....

3) In the pop-up Installed device descriptions dialog box, select a device description file in EtherCAT
XML format. Select a slave station device description file saved locally and open its XML file.

-76-

Chapter 3 Network Settings

2 Scanning Device

The scanning function is recommended. The procedure is hot reset -> logout -> device scanning.

 ■ Preparations

The prerequisites of using device scanning commands are as follows:

1) PC is properly connected to the PLC through a gateway, shown as follows:

2) The PLC is networked with the slave station.

3) The port configuration of PC is consistent with that of PLC, shown as follows:

The EtherCAT of PC includes the EtherCAT_C(1) and EtherCAT_D(2), so the PLC must also have the
EtherCAT_C(1) and EtherCAT_D(2). To ensure port consistency, download the port configuration before
using the scanning command.

-77-

Chapter 3 Network Settings

 ■ Scanning Operations

1) In normal situations, the following device scanning interface is displayed when you scan the device.

2) The options in the figure are as follows:

No. Option Description

1 Scan Device Scans the device.

2 Scan TimeOut
Indicates the maximum timeout interval of each scan operation. If no result is detected,
the timeout interval can be prolonged. By default, the minimum value is 20s.

 ■ Operations on Scanning Result

In normal situations, the scanning results are as follows:

1) Copy all devices

If you choose to copy all devices to the project, the scanning result is added to the device tree and
configuration.

-78-

Chapter 3 Network Settings

2) Copy some devices

If you need to copy only some of the devices, press Ctrl+, or press Shift+ and click the desired devices. In
this situation, the copy all devices button is as follows:

Then you click Copy into project to complete the device copy operation.

3) Allocate alias address

In the first row of the AutoincreAddr column, you can double-click an alias address to edit it. After the
modification, the text color is changed, shown as follows:

After editing the alias address, click the Assign Address button in 2 to make the alias address take effect.

If the modification is successful, the system displays the following prompt:

-79-

Chapter 3 Network Settings

If the modification is failed, the system displays the following prompt:

4) Display the project differences

Display the differences between the configuration device and scanned device, shown as follows:

The numbers in the figure are described as follows:

No. Name Description

1 Before copy
Select the scanned device on the left and the current device on the right, and select 1.
The scanned device is inserted in front of the selected device on the right. This command
can also be used between modules.

2 After copy
Select the scanned device on the left and the current device on the right, and select 2.
The scanned device is inserted behind the selected device on the right. This command
can also be used between modules.

3 Changed to
Select the scanned device on the left and the current device on the right (the left device
and the right device must be of the same type), and select 3. The right device is replaced
with the scanned device.

-80-

Chapter 3 Network Settings

No. Name Description

4 Copy all
All the devices on the right are cleared, and all the scanned devices are copied to the right
side.

5 Delete Select a device on the right to delete it. This command can also be used on modules.

6 Confirm
Confirm the preceding operations, and copy the devices to the device tree and
configuration.

 ■ Scanning Abnormalities

1) The PC is not connected to the PLC. The following information is displayed:

2) The PC is connected to the PLC, but the PLC is not connected to the slave station. The following
information is displayed when the slave station cannot be detected:

3) The port information in programming software configuration is different from the PLC information.
The following information is displayed:

In this situation, you need to download the port information in the programming software again.

NOTE

As shown in the following figure, EtherCAT_C is selected in configuration, but the actual MAC address
is changed to EtherCAT_D. The EtherCAT_D port information may be displayed when EtherCAT_C is
scanned.

-81-

Chapter 3 Network Settings

If you log out after the EtherCAT bus starts and perform the device scanning operation, the scanning
operation may fail or return an inaccurate result. The reason is that reading the slave station information
(for example, object directory 0xF050) through SDO communication is timed out, so the scanning result
is affected. (SDO communication is asynchronous, so CPU loading, bus cycle period, and user program
execution time will affect the SDO communication.)

3 Updating Device

If the master station version does not match or needs to be upgraded, you can run the device update
command.

Procedure: Right-click the EtherCAT master station, and choose Update Device from the shortcut menu.
The following dialog box is displayed. Click Display all versions (for experts only), select the desired
version, and click Update Device.

-82-

Chapter 3 Network Settings

4 Editing I/O Mappings

When you choose to edit I/O mapping, the following interface is displayed:

Select a proper filter to filter out unneeded options.

-83-

Chapter 3 Network Settings

5 Bus Tasks

All IEC tasks of PLC are scanned and executed cyclically strictly based on the same logical sequence. The
logical sequence includes four steps: input update (1), IEC task execution (2), output update (3), bus cycle
execution (4), shown as follows:

Figure 3-25 Bus cyclic tasks
Each step is described as follows:

No. Step Color Description

1
Input
update

Green
Before the IEC task starts, data is read from the bus input buffer, and copied to the
task- related input variable.

2
IEC task
execution

Orange Scan and execute the POU under the bus task.

3
Output
update

Red
Before the IEC task is finished, the bus-related output variables in the task are copied to
the bus output buffer.

4 Bus cyclic Blue

It is the bus communication execution program implemented by bottom-layer I/O drive.
It includes two functions: (1) Transfer the data from bus output buffer to the receive
buffer of the remote slave station. (2) Transfer the data in the send buffer of the remote
slave station to the bus input buffer.

NOTE

 ◆ Warning!
1) If an output variable is used by multiple tasks, the variable value is uncertain (the output variable

value may be changed or overwritten by other tasks).
2) If a task is interrupted by another task with a higher priority, the high-priority task reads data from

the input buffer, and synchronizes the data to the input variable of the current task. Therefore,
the input variables within a scan period may be different. To avoid this problem, copy the input
variable value before the task starts so that the task will invoke the copied input variable.

-84-

Chapter 3 Network Settings

Special Bus Cycle Action of EtherCAT

The bus data in the last period is copied before IEC input.

Figure 3-26  EtherCAT bus cycle table
 The Enable each task message option in EtherCAT Master Station Configuration is available. After this
option is activated, the additional information of each task will be sent to the device. In this situation, bus
communication can be executed under multiple tasks, to reduce the bus load.

 EtherCAT bus cycle table when the Enable each task message option is activated

NOTE

 ◆ After the EtherCAT master station is automatically inserted, the EtherCAT_*** task is also inserted
to the current task configuration.

 ◆ The bus cycle task of EtherCAT master station must be executed in the same task as the
EtherCAT_***.EtherCAT_Task.

 ◆ The input and output of EtherCAT master station are executed in the same task as EtherCAT_***.
EtherCAT_Task. Therefore, it is recommended to execute the device control program (such as
PLCOpen axis control command) under this task.

-85-

Chapter 3 Network Settings

3.3.3 EtherCAT Master Station

1 General Settings

The EtherCAT master station configuration dialog box provides the main settings of the master station.

Autoconfig Master/Slave

If you click this option, the main settings of master and slave stations will be automatically completed. In
this situation, all the editors of slave stations will not display the FMMU/Sync tab.

NOTE

 ◆ Prompt

1) The automatic settings are default settings, which are strongly recommended to standard
applications.

2) If this option is not selected, you must manually complete all settings of master and slave
stations. Therefore, you must have professional skills.

3) For the communication settings between slave stations, do not select auto configuration.

EtherCAT NIC Setting

 ■ Destination Address (MAC)

MAC address of the EtherCAT network member that receives packages. If Broadcast is selected, use a
broadcast address (FF FF FF FF FF FF).

-86-

Chapter 3 Network Settings

 ■ Enable Redundancy

If ring topology is selected, the redundancy option needs to be enabled. When this option is enabled,
if a single point failure occurs in network connection, the EtherCAT network can still work normally.
After this option is enabled, you also need to define the second EtherCAT NIC.

Figure 3-27 EtherCAT ring topology (redundancy)
 ■ Source Address (MAC)

PLC's MAC address.

 ■ Network Name

NIC name, including the following options:

 ■ Select network by MAC/Select network by Name

Each EtherCAT NIC has a unique MAC address. Therefore, if you click Select network by MAC, this
project cannot be used on other devices.

If you need the project to be independent of device, click Select network by Name. In each option,
you can click Browse... to display the MAC addresses of available target devices and their names,
shown as follows:

 ■ Redundant EtherCAT NIC Setting

If the Enable Redundancy option is clicked, this setting is available. You can set the options of
redundant EtherCAT NIC.

-87-

Chapter 3 Network Settings

Distributed Clock

 ■ Cycle time [µs]

Execution cycle time of EtherCAT master station function. It must be the same as the cycle time of the
IEC task bound to the EtherCAT master station. If the distributed clock function of the slave station
is enabled, the cycle time is synchronized with the Distributed Clock settings in the slave station
editor.

 ■ Sync Offset [%]

Ratio of the cycle time of the EtherCAT master station's IEC task (PLC task) to the reference distributed
clock (generally, SYNC0 interrupt), ranging from -50% to +50%, with the default value 0%.

Sync offset [%] = (SYNC0 interrupt time - PLC task cycle start time)/ PLC task cycle time.

-88-

Chapter 3 Network Settings

NOTE

 ◆ By default, the PLC task cycle time is the same as the distributed clock cycle time of the slave
station.

 ◆ In actual settings, consider the clock jitter of the controller master station (system instantaneity),
PLC task execution time, PLC task cycle time, and number of slave stations.

 ■ Sync Window Monitoring

After this option is enabled, synchronization of the slave station is monitored.

 ■ Sync Window

Synchronization window monitoring time. If the synchronization information of all slave stations is
included in this window, the xSyncInWindow (IoDrvEtherCAT) variable is set to TRUE; otherwise, set
it to FALSE.

 ■ Diagnostic Info

In the online mode, the diagnosis information includes the information about EtherCAT master
station startup and running.

Options

 ■ Use LRW instead of LWR/LRD

This option enables the slave station - slave station communication. EhterCAT master station logical
addressing will use the combination of read/ write command (LRW) to replace the read-only (LRD)
and write-only (LWR) commands.

 ■ Enable messages per task

After this option is selected, the read and write commands of input and output information will be
completed by different tasks.

 ■ Auto restart slaves

After this option is selected, the master station will restart the slave station upon communication
error.

Master Station Settings

The master station settings can be completed only when the auto mode is disabled (see the following
description); otherwise, these settings are automatically completed and hidden in the dialog box.

 ■ Image In Address: inputs the first logical address of the first slave station.

 ■ Image Out Address: outputs the first logical address of the first slave station.

2 Function Code

Function codes refer to the vendor-specific parameters of Inovance servo products. By using the master
station options, you can read/write, import, and export vendor-specific parameters of multiple products,
for commissioning and maintenance.

-89-

Chapter 3 Network Settings

 ■ Select All: selects all slave stations, axes, and servo function codes under the axes.

 ■ Cancel All: cancels all selected options.

 ■ Read the Parameter: reads the servo function codes carrying the RO, RW or R attribute when the servo
is running.

 ■ Write the Parameter: writes the servo function codes carrying the W or RW attributes when the servo
is running.

 ■ Export FunCode: exports all servo function codes of slave stations, in Excel format.

 ■ Import FunCode: imports all function codes of slave stations from an Excel file. If the configuration is
inconsistent with the file, an error is reported.

3 Upgrade

 ■ Select All: selects all slave stations.

 ■ Cancel All: cancels all selected slave stations.

 ■ Download EtherCAT XML file: downloads the EtherCAT slave station's XML file from InoProShop to the
E2PROM of the slave station. To perform batch download, select multiple slave stations.

4 Sync Unit Assignment

 ■ Sync unit: groups slave stations. If any slave station in the group is lost, the entire group is lost, but
other groups are not affected.

 ■ Add: adds a group. Then you can select the slave station group.

-90-

Chapter 3 Network Settings

5 EtherCAT I/O Mapping

This is a tab on the EtherCAT master station configuration editor, in which the instance (variable) of
IODrvEtherCAT type is specified for EtherCAT I/O, so that the PLC connected to EtherCAT can be controlled
by user program. For the description of mapping, see I/O Mapping.

The automatically created master station instance is displayed at the bottom of the IEC Objects dialog
box.

NOTE

Note: The variables and types of mappings must be consistent.

6 Information

This dialog box displays the following information about the current module: name, vendor, group,
category, ID, and version.

file:///C:/Users/c3350/Desktop/%25e4%25b8%25ad%25e5%259e%258bPLC%25e7%25bc%2596%25e7%25a8%258b%25e8%25bd%25af%25e4%25bb%25b6%25e6%2589%258b%25e5%2586%258c1022(1)/codesys.chm::/I_O_Mapping.htm

-91-

Chapter 3 Network Settings

3.3.4 EtherCAT Slave Station

1 General Settings

The general settings interface of the EtherCAT slave station is as follows. It provides the basic settings of
the slave stations.

Address

If automatic configuration mode in the master station editor is not enabled, the following options are
available:

-92-

Chapter 3 Network Settings

 ■ AutoInc Address: indicates the automatically incremental address (16 bits), which is determined by
the physical topology location of the slave station. This address is used only when the EtherCAT is
started. The EtherCAT slave station address is allocated to the slave station at the corresponding
physical topology location by using the sequential addressing method.

During sequential addressing, according to the EtherCAT protocol, the AutoInc address of the slave
station is determined by its connection location in the physical topology network, and is represented by
a negative number. Sequential addressing sends the subframe, in which the AutoInc address is increased
by 1 every time the subframe passes a slave station. When the physical slave station receives the frame, it
determines whether the frame belongs to itself by checking whether the AutoInc address in the frame is 0.
This mechanism is called sequential addressing or automatically incremental addressing.

 ■ EtherCAT Address: indicates the final address (formal address) of the slave station. It is assigned by
the master slave when the master station starts. This address is independent of the actual location on
network. The slave station address is irrelevant to the connection order on the network segment.

 ■ Enable Expert Settings: If this option is enabled, the settings of distributed clock, auto check upon
startup, timeout, cycle unit control, and watchdog can be performed.

Distributed Clock

 ■ If the enable option is selected, the distributed clock function is enabled.

 ■ Sync Unit Cycle (µs): If the distributed clock function is enabled, the syn unit cycle value is the same
as the cycle time of EtherCAT master station.

 ■ Select DC: This option provides all distributed clock settings in the device description file, including
AutoRun, SM Event Synchron, DC Synchron. The options are described as follows:

No. Option Function

1 AutoRun
In this mode, the local control cycle is generated by a local timer interrupt. The cycle time is
determined by the master station. This is an optional function of the slave station.

2
SM Event
Synchron

Triggered by the data input or output event within the local cycle. The master station can
write the sending period of the procedure frames to the slave station, and the slave station
checks whether this cycle time is supported or optimizes the cycle time. This is an optional
function of the slave station. The synchronization is usually triggered by data output event.
If the slave station has only the data input event, the synchronization is triggered by data
input.

3 DC Synchron
Triggered by the SYNC event within the local cycle. The master station must complete
data frame sending before the SYNC event. Therefore, the master station clock must be
synchronized with the reference clock.

4
SYNC0:

SYNC1:

Indicates the slave station synchronization signal 0/1. The distributed clock control unit
(internal function of the EtherCAT dedicated communication chipset) of the slave station
can generate two synchronization signals: SYNC 0 and SYNC 1, which provide the interrupt
sign to the application layer programs of the slave station, or directly trigger the output
data update.

5
Enable SYNC 0:

Enable SYNC 1:

After this option is selected, SYNC0/SYNC1 synchronization signals are started.

Sync Unit Cycle: If this option is selected, the synchronization cycle time of the slave station
is the master cycle time x selected coefficient. The Cycle time (µs) field displays the current
cycle time.

 ■ User Defined: If this option is selected, you can enter the desired cycle time in µs in the Cycle time (µs)
field.

Diagnosis

This part is available only in the online mode.

 ■ Current Status: displays the current communication state machine of the slave station. The possible
values include initialization, pre-operation, safe operation, operation, and BootStrap (not supported
by Inovance servo currently). If the status is running, the configuration of slave station is completed.

-93-

Chapter 3 Network Settings

Additional

Options: If a slave station device is set as optional, no error message is generated, so that the device
will not be included in the bus system. To enable this option, you must save a station address in the
slave station device. Therefore, define and write the station alias into E2PROM. In addition, this option
is effective only when Autoconfig Master/Slave in EtherCAT master station settings is selected and this
option is supported by the EtherCAT slave station.

Startup checking

By default, the system automatically checks the vendor ID or product ID after startup. If the IDs do
not match, the bus stops running and does not perform the subsequential operations. This avoids
downloading wrong configuration.

Timeouts

By default, the following operations are not defined as timeout. If you need to know whether the
operations exceed the specified time, set the time here:

 ■ SDO Access: Timeout interval in EtherCATzwhich the service data object (SDO) of the EtherCAT master
station accesses the slave station.

 ■ I -> P: The communication state machine of slave station changes from initialization to pre-operation.

 ■ P -> S / S-> O: The communication state machine of slave station changes from pre-operation to safe
operation, or from safe operation to operation.

 ■ DC cyclic unit control: Allocated to the local microprocessor to set the distributed clock options. This
function is completed in register 0x980 of the EtherCAT slave station. The possible values include
cyclic unit, latch unit 0, and latch unit 1.

Watchdog

 ■ Set multiplier: Set the frequency multiplication ratio of the watchdog timer to determine the
minimum increment unit. The default value is 2498. The minimum increment unit is 100 µs.

 ■ Set PID watchdog: If PDI watchdog is enabled, when the process data interface (PDI) communication
time of EtherCAT slave station exceeds the specified value, the watchdog is triggered.

 ■ Set SM watchdog: If synchronization management (SM) watchdog is enabled, when the process data
communication time of EtherCAT slave station exceeds the specified value, the watchdog is triggered.

Slave Station Alias

The settings are effective only when Options is selected and the slave station supports alias address
(defined in the device description file). If the alias address of the slave station has been configured, the
slave station can normally run without the need of modifying the user program configuration when you
adjust its location on the physical topology network.

Note: After the alias address of slave station is changed, you must download the user program again to
make the alias effective. In addition, the aliases of some slave stations can take effect only after power
cycle. For details, see the slave station manuals.

 ■ Disable: If this option is selected, the slave station will not detect the alias address.

 ■ Configure Station Alias (ADO 0x0012): When this option is supported by the slave station and Options
is selected, the alias address can be written in online running state.

 ■ Write into E2PROM: This option is available only in online mode. It writes the defined address into the
slave station E2PROM. If the slave station does not support this option, this option is invalid and the
slave station cannot work with the alias.

 ■ Real Address: This column is available only in online ode. It displays the actual address of the slave

-94-

Chapter 3 Network Settings

station. It is used to check whether the E2PROM writing command is successful.

 ■ Explicit Device Identification ADO(0X0134): Reserved.

 ■ Data Word (2 Bytes): Reserved.

2 FMMU/Sync

If the autoconfig mode of the master station is not enabled, this dialog box is only provided by the
EtherCAT slave station configuration editor. It displays the slave station's fieldbus memory management
units (FMMUs) defined in the device description file and the synchronization manager (Sync). These
settings can be modified, for example, the communication between slave stations.

NOTE

These are advanced settings, and are unnecessary for standard applications.

FMMU

This tab configures the fieldbus memory management unit of the slave station used to process the
process data, including the logical address (Ph. Start Address) mapping to each physical address (Ph.
GlobStartAddr). You can add a new unit by clicking Add... or Edit... In the FMMU dialog box.

Sync Manager

This tab displays the synchronization manager of the slave station, including the synchronization manager
type (Mailbox In, Mailbox Out, Inputs, or Outputs), physical start address, access type, buffer, and physical
address to be accessed by the interrupt. In the synchronization manager editor, you can click Add or Edit
to add or modify synchronization management.

-95-

Chapter 3 Network Settings

3 Process Data

In the automated control system, application programs exchange data in two modes: time-critical and
non-time-critical. Time-critical means that the specified action must be completed within the specified
time window. If the action cannot be completed in the specified time window, the control is ineffective.
The procedure for periodically sending time-critical data is called PDO. Non-time-critical data does not
need to be periodically sent, and uses MailBox data communication SDO in EtherCAT.

The first row of process data is the PDO edit function key and displays PDO information, shown as follows:

 ■ Add: Adds PDO based on the PDO group attributes (only editable attributes). You can add one group
or multiple groups of data. To add multiple groups of data, press Ctrl+ and Shift+, and click the
desired groups. Note that the object dictionary indexes of the options to be added are correct. Note:
The number of PDOs to be added cannot exceeds the limitation described in the servo manual.

 ■ Edit: Edits the PDO option based on the PDO group attributes (only editable attributes).

 ■ Delete: Deletes the PDO option based on the PDO group attributes (only editable attributes). You can
delete one or multiple options. To delete multiple options, press Ctrl+ and Shift+, click the desired
groups, and click Delete. Or right-click the selected options and choose Delete from the shortcut
menu.

 ■ Collapse: Collapses all PDO groups.

 ■ Filter: Includes the display all, display output PDO, display input PDO, display all, display input and
output PDO, display output PDO, display only output PDO, display input PDO, and display only input
PDO group functions.

 ■ Load PDO: The PDO group data of slave station can be uploaded to the programming software only
when the slave station is running.

 ■ PDO Assign: After this option is selected, click the System Parameters Options in the Startup
Parameters interface. Then the input and output PDO group assignment information is added to the
startup parameter group, shown as follows:

-96-

Chapter 3 Network Settings

 ■ PDO Config: Select PDO configuration and click the System Parameters Options on the Startup
Parameters interface. Then the input and output PDO group information is added to the startup
parameter group, as show below:

 ■ PDO Len: The data size includes the total input and output PDO length.

4 Startup Parameters

The startup parameters can be transmitted to the slave station through the service data object (SDO). The
startup parameters include the basic configuration parameters used for the startup of the slave station.
The interface is as follows:

 ■ Add: Adds an SDO project to the startup parameter list. The pop-up object dictionary dialog box is as
follows:

-97-

Chapter 3 Network Settings

Before adding the SDO, you can modify its parameters below the edit bar, including the index, sub-index,
bit length, and value, to form a new startup parameter. To add multiple groups of startup parameters, you
can press Ctrl+ and Shift+, and click multiple groups of startup parameters.

 ■ Edit: Edits the options. The read-only options cannot be edited, such as system parameters.

 ■ Delete: Deletes the options. To delete multiple groups of startup parameters, press Ctrl+ and Shift+,
click multiple groups of startup parameters, and click Del or press the Del key.

 ■ Move Up, move Down

The SDO list order (from top to bottom) indicates the order in which the startup parameters are
transmitted to module. By clicking the Move Up and Move Down buttons, you can change the
parameter transmission order.

 ■ DownLoadAll, CancelAllDownload

After SDO is downloaded, you do not need to download it again. By clicking CancelAllDownload
(system parameters cannot be canceled), you can cancel the attribute download. You can also select
some attributes to be downloaded. By clicking DownLoadAll, you can download all attributes.

 ■ DisplaySystemParameter

After you select PDO distribution and PDO configuration, the parameters added to SDO are only for
comparison.

 ■ To edit the Value and Comment columns of SDO, press Space or click the blank space.

NOTE

If an error occurs in SDO transmission, the following operations are supported:

1) Abort if error: If an error is detected, SDO transmission is stopped.

2) Jump to line if error: If an error is detected, SDO transmission skips to the line of which the line
number is specified. (Line number is displayed in the line column.)

-98-

Chapter 3 Network Settings

Figure 3-28 Error handling

5 Slot Configuration

 ■ Slot configuration supports the slave stations in compliance with ETG5001.1. It is used to configure
the modules or functions.

As shown in the following figure, the current mode is CSP_CSV:

The following modes are available:

No. Mode Description

1 CSP Cyclic Synchronous Position

2 PP Profile Position

3 CSV Cyclic Synchronous Velocity

4 PV Profile Velocity

5 CST Cyclic Synchronous

6 PT Profile Torque

If the location mode does not meet requirements, change it to another mode, for example, CST
synchronization torque.

The default CSP/CSV is applicable to most application scenarios. If the field drive axis needs to use
synchronization location and synchronization torque, select CSP/CST.

NOTE

 ◆ Change: switches to a different mode.
 ◆ Delete: deletes the current mode.
 ◆ To change the mode to another mode, delete the current slot mode.

-99-

Chapter 3 Network Settings

After the CSP_CSV mode is changed to the CST mode the process data and I/O mapping are also changed:

Before the change to CST:

After the change to CST:

-100-

Chapter 3 Network Settings

 ■ Download slot configuration: After the module is configured, the configured slot information needs to
be downloaded to the device. After this option is selected, the following parameters are added to the
startup parameters:

1 - indicates the mode ID of the current module.

2 - indicates the number of modes of the module to be downloaded.

6 Online

You can use the slave station online editor only after logging in to the . This interface is used to switch
the slave station state machine manually, read/write the E2PROM of the slave station, perform FoE
upload/ download, and slave station firmware upgrade.

EtherCAT state machine coordinates the status of master and slave stations during initialization and
running, shown as follows:

-101-

Chapter 3 Network Settings

EtherCAT status conversion order: initialization -> pre-operation -> safe operation -> operation.

Status changing process:

Initialization, pre-operation, safe operation, operation, and clear error

EtherCAT file access

To transmit firmware file to the slave station for firmware upgrade, click Bootstrap to convert the slave
station into Bootstrap mode.

By clicking the corresponding button, you can download and upload the firmware file. Then a save or
firmware file selection dialog box is displayed. File is transmitted by using character string and password.
The information is provided by the slave station, and recorded in the data table of the slave station. During
firmware upgrade, do not power off the device or switch status. Perform the operations after the upgrade
is complete.

E2PROM Access

Slave station configuration can be read from E2PROM and written into E2PROM. Similar to firmware file
transmission, this operation also displays a file save or open dialog box.

You can run the write E2PROM XML command to write the slave station configuration to the device
through an XML file. This command is valid only when the XML file contains configuration data (in
configuration data part).

Clear errors

When the current status has an error, click this button to clear the error.

-102-

Chapter 3 Network Settings

7 Online COE

The online COE values can be read only when the bus is normal and you have logged in to the PLC, shown
as follows:

8 EOE Settings

Ethernet over EtherCAT allows any Ethernet device to connect to the EtherCAT through a conversion
terminal, without affecting the instantaneity of EtherCAT. Similar to popular Internet protocols (such as
TCP/IP, VPN, and PPPoE(DSL)), Ethernet frames are transmitted using the EtherCAT protocol. This allows
the standard network devices to connect to the terminals, such as printer and PC, through switches.

For the slave stations supporting Ethernet over EtherCAT (EOE), you can configure communication
function. The previous dialog box is available only when the device supports Ethernet over EtherCAT:

 ■ Virtual Ethernet Port: Enables the EOE function for the slave station. If this option is activated, a
special virtual MAC address must be specified.

 ■ Switch Port: Uses this device as an IP port. The Ethernet communication parameters must be set.

-103-

Chapter 3 Network Settings

 ■ IP Settings: Uses this device as an IP port. The Ethernet communication parameters must be set.

The Ethernet communication parameters must be set based on the virtual Ethernet adapter parameters.
Four bytes are assigned to each of IP Address, Subnet Mask, and Default Gateway to identify the slave
station on the network. When you place the cursor on the edit area, you can modify the default settings.

NOTE

The IP port must be in the same network segment as the virtual Ethernet adapter. For example, if the
Ethernet adapter's IP address is 192.168.1.1 and subnet mask is 255.255.255.0, the IP port must be
within the range from 192.168.1.2 to 192.168.1.254.

 ■ DNS Server: IP address of the DNS server.

 ■ DNS Name: DNS server name.

9 Servo Function Codes

Function codes refer to the vendor-specific parameters of Inovance servo products. On the Function
Code tab of the slave station, you can read, write, import, and export vendor-specific parameters for
commissioning and maintenance, as shown in the following figure:

 ■ Select All: Selects all servo function codes or cancels all selections.

 ■ Select Page: Selects all or cancels all selections on the current page.

 ■ Read: Read only when the slave station is in operation state and the project attribute is read.

 ■ Write: Written only when the slave station is in operation state and the project attribute is write.

 ■ Export: Exports the selected function codes.

 ■ Import: Imports function codes.

10 ESC Register

The ESC register is available only when the Enable Expert Settings option is selected. It is used to read
the ESC chipset register address in advanced commissioning, shown as follows:

-104-

Chapter 3 Network Settings

 ■ SelectAll: Selects all items.

 ■ CancelAll: Cancels all selections.

 ■ Read: Reads option values in operation state.

 ■ Write: Writes the values carrying write attributes in operation state.

 ■ Export: Exports the selected items in XML format.

 ■ Import: Imports a valid XML file. Only the exported XML items are displayed.

 ■ Shortcut menu: Implements conversion among hexadecimal, decimal, and binary formats.

11 EtherCAT I/O Mapping

EtherCAT I/O Mapping is a tab in EtherCAT slave station configuration editor, in which the ETCSlave
instance (variable) and I/O variable defined by slave station are specified for EtherCAT I/O. Therefore, the
EtherCAT slave station connected to the PLC can be controlled by user program.

For the description of mapping, see I/O Mapping.

The automatically created slave station instance is displayed in IEC Objects at the bottom of the dialog
box.

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/codesys.chm::/I_O_Mapping.htm

-105-

Chapter 3 Network Settings

NOTE

Note: The variables and types of mappings must be consistent.

12 Status

This configuration editor is used to configure the EtherCAT slave station, including the NIC and internal
bus system status information (such as startup and stop), and diagnosis information of the specified
device.

13 Information

This dialog box is provided in EtherCAT master or slave station configuration. The configuration of a
module includes: Name, Vendor, Categories, Version, Type, Order ID, Description, and Image.

3.3.5 CiA402

After adding a servo slave station, double-click an axis. The axis configuration interface is displayed. The
following is the description of the options on the axis configuration interface from top to bottom.

1 General Setting

Axis general settings include virtual axis and physical axis. The definitions are as follows:

Type Function

Virtual
mode

Virtual mode means the operation without physical servo or motor. It obtains desired parameters by
simulated operation. This mode is not affected by external environment.

Physical
mode

Physical mode means the operation with servo and motor. Some parameters can be obtained only in
physical axis mode, for example, online COE. This mode may be affected by external environment, for
example, the trace operation.

-106-

Chapter 3 Network Settings

Settings of virtual and physical axes

Settings of modulo and finite modes

The functions in the figure are as follows:

No. Name Function

1 Virtual mode
If this option is selected, the virtual axis mode is used; otherwise, the physical axis mode is
used.

2 Axis type
Modulo mode: Axis locations are added or reduced in modulo way.

Finite mode: Axis locations are added or reduced within a specified range.

3
Software
limits

After this option is selected, the negative and positive location limits on axis are applied to the
modulo mode.

4
Software error
reaction

It is relevant to software limits, and is effective only when the software limits function is
enabled. After this option is selected, if the axis location exceeds the software limit, the
software reacts in response to the error. That is, it decelerates to the maximum distance.

5
Modulo
settings

It applies to the finite mode to limit the finite cycle. This parameter is associated with the
Command pulse count per motor rotation parameter on the Scaling interface, the homing
parameters on the Homing Setting interface, the Maximum Velocity parameter on the
Mapping/Other Setting interface. When setting this parameter, note the associated parameter
settings. If the associated parameter settings do not match this parameter, the error will be
prompted and the correct parameter values will be displayed.

6
CNC Dynamic
limits

Applied to the settings of CNC function axis.

7
Velocity ramp
type

Applied to the axis velocity change track.

-107-

Chapter 3 Network Settings

No. Name Function

8 Identification Axis's external ID.

9
Position lag
supervision

Axis operation mode when the position lags.

The following figure shows the axis operation in modulo mode after the servo starts, including the
real- time position, velocity, accelerated velocity, torque, and communication status. The error information
can be displayed.

-108-

Chapter 3 Network Settings

2 Scaling

This interface is used to calculate the number of pulse by setting the related parameters.

-109-

Chapter 3 Network Settings

The options and functions in the previous figure are as follows:

No. Name Function

1
Unit in
application

Sets the length unit according to your requirement. After the unit is selected, the unit
settings in axis general settings, scaling, homing settings, and mapping/other settings
modules are also changed.

2 Invert Direction Enables the axis to run in the invert direction.

3
Command pulse
count per motor
cycle

Sets the encoder resolution ratio of the motor, namely, the number of pulses required for
a motor rotation. The default value is 1048576 (Inovance 20-bit encoder).

4
Do not use
gearbox

Sets the work travel distance per motor rotation according to the device situation. Work
travel distance per work rotation: travel distance (unit in application) of the table (such
as belt pulley, gear, and reducer) from the end of machinery per rotation. The number of
pulses can be calculated by referencing the unit conversion formula.

5 Use gearbox

Sets the work travel distance, numerator of gear ratio, and denominator of gear ratio per
motor rotation according to the device situation. Work travel distance per work rotation:
travel distance (unit in application) of the table from the end of machinery per rotation;
numerator of gear ratio: number of teeth of the table; denominator of gear ratio: number
of teeth of gear. The number of pulses can be calculated based on the axis type selected
in axis basic settings and the corresponding reference unit. Note: The denominator and
numerator of gear ratio can be scaled up and down by ratio.

Application Example

1) The motor directly drives the screw rod to move, and the motor moves 10 mm per circle around the
screw rod. The motor is IS620N incremental motor (20-bit encoder resolution ratio) of Inovance. The
configuration is as follows:

2) The motors are connected by driving turnplate. The reduction gear ratio between motor and
turnplate is 30:1. (If the number of motor gear teeth is 1, the number of table teeth is 30. That is, when
the work gear rotates 1 round, the motor gear rotates 30 rounds.) The travel distance of turnplate is
0-360 degree. The motor is the IS620N absolute motor (23-bit encoder resolution ratio) of Inovance.
The configuration is as follows:

-110-

Chapter 3 Network Settings

NOTE

After the numerator of gear ratio, denominator of gear ratio, and work travel distance per work
rotation are modified, the axis parameters on other interfaces are affected; therefore, you need to
modify them accordingly.

3 Homing Setting

Homing settings include the graphic parameter settings for axis homing (shown as follows). The interface
provides graphic setting instruction, so you can select the homing mode from the drop-down list without
reading the servo manual. You visibly and easily complete parameter settings, as shown in ① in the
following figure.

-111-

Chapter 3 Network Settings

The options and functions in the figure are as follows:

No. Name Description

1 Homing Methods
Homing method of the drive. A total of 35 options are supported (the actual homing
method is determined by the drive). The diagrams below vary with the homing method.
Select a homing method according to your needs.

2 Homing Vel
High velocity of the axis when searching for the deceleration point, for example, H in the
figure.

3 Acceleration Acceleration of the axis when searching for the velocity change.

4
Homing Crawl
Vel

Low velocity of the axis when searching for the homing, for example, L in the figure.

5 Time Limit
Total homing time. If timeout, an alarm is reported. It is the maximum time allowed
for the axis performing the homing operation. If homing times out, the axis homing
operation fails.

4 Mapping/Other Setting

-112-

Chapter 3 Network Settings

The options and functions in the figure are as follows:

No. Name Description

1
Other
Setting

Sets the maximum values and velocities of positive and negative torques.

Max Positive Torques/Max Negative Torques: Torque command limits set for protecting the
drive. When the drive torque value is larger than the limit, the actual drive torque value is
changed to be consistent with the limit.

Maximum Velocity: Limits the velocity within the specified limit. If the torque value is larger
than the mechanical load torque, the motor keeps speeding up, and overspeed may occur to
damage the mechanical device.

Note: The maximum velocity cannot be set to 0. If it is set to 0, the axis may have a running
error.

2 Mapping

When mapping is selected, the slave station is associated with axis. The slave station data is
directly mapped to the axis. If mapping is not selected, you can manually modify the address
in axis mapping, in which:

Input format is %I+ Type letters + Arabic numbers

Output format is %Q+ Type letters + Arabic numbers

Type letters (bytes occupied by type) include SINT-B, UINT-W, DINT-D, and UDINT-D.

When a compiling error is reported during manual address input, the input address needs to
be deleted, and you need to enter the correct address.

Note: The input address must be quoted by single quotes. If a compiling error is reported by
the display is normal, delete the displayed result and enter the address in correct format.

5 Information

This interface displays the axis basic settings, including Name, Vendor, Group, Categories, ID, Version,
Order Number, and Description.

NOTE

Ensure that the storage is carried out in the specified ambient environment range, the battery has a
good contact and sufficient power; otherwise the encoder position may be lost.

-113-

Chapter 3 Network Settings

If the axis parameter settings are not modified, the default parameter settings of SDO are also retained. If
the axis parameter settings have been modified, the default parameter settings of SDO are also modified,
shown as follows:

3.3.6 Virtual Axis

The virtual axis interface is similar to the EtherCAT configuration interface. It should be noted that when
multiple EtherCAT master stations are enabled and virtual axis is enabled (by choosing Axis Pool > Virtual
Axis), the bus cycle task must be bound to the invoked EtherCAT task (The default setting is Use parent
bus cycle setting. This only applies to the single-master scenarios.) One virtual axis cannot be invoked by
multiple EtherCAT tasks; otherwise, a running error will occur.

The settings in red box are bus cycle task settings.

-114-

Chapter 3 Network Settings

3.3.7 AM600-4PME Position Module

The position module interfaces are the same as CiA402 axis settings interfaces, except that the following
interface is added:

The AM600-4PME module is a pulse position module that has four high-speed output channels. It
implements speed and position control for the pulse and stepping drives that use pulse as signals. This
interface sets the parameters of the AM600-4PME module. Taking the first channel of AM600-4PME as an
example, the interface configures the following functions:

-115-

Chapter 3 Network Settings

Name Description
Default
Setting

Position Mode

Indicates the output pulse type on the high-
speed pulse output interface.

AB phase 1 multiplier

Pulse + direction

CW/CCW

Pulse +
direction

Filter Time
Indicates the pulse input filter time of the digital
input terminal.

4 μs

X00 Setting

Function

Selects the functions of X00 digital input terminal.

Normal input

Emergency stop switch

Positive limit

Positive limit

Polarity

Selects the effective polarity of X00 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

X01 Setting

Polarity

Function

Selects the functions of X01 digital input terminal.

Normal input

Emergency stop switch

Negative limit

Negative limit

Selects the effective polarity of X01
digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

X02 Setting

Polarity

Function

Selects the functions of X02 digital input terminal.

Normal input

Emergency stop switch

Home access

Home access

Selects the effective polarity of X02
digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

X03 Setting

Polarity

Function

Selects the functions of X03 digital input terminal.

Normal input

Emergency stop switch

Normal input

Selects the effective polarity of X03
digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

YR0 Setting

Polarity

Function

Sets the YR0 function of digital output terminal.

Normal digital output terminal

Enable servo (output signal)

Enable servo

(output
signal)

Energizes or disables the digital
output terminal YR0.

High - Energization when control is
set to 1.

Low - Energization when control is
set to 0.

High

For the applications of the position module, see EtherCAT Remote Communication Application Manual.

-116-

Chapter 3 Network Settings

3.3.8 AM600-2HCE Counter Module

The counter module interfaces are the same as CiA402 axis settings interfaces, except that the following
interface is added:

The AM600-2HCE module is a pulse counter module that has two high-speed input channels. It
implements pulse counter and frequency measurement in AB phase pulse, pulse + direction, and
CW/ CCW modes. This interface sets the parameters of the AM600-2HCE module. Taking the first channel of
AM600- 2HCE as an example, the interface configures the following functions:

Name Description
Default
Setting

Mode

Selects the input mode of channel input pulse.

AB phase 1 multiplier

AB phase 2 multiplier

AB phase 4 multiplier

Pulse + direction

CW/CCW

AB phase 4
multiplier

Sampling cycle
Calculates sampling cycle by input filter
frequency.

10 ms

Filter Time
Sets the sampling filter of pulse input channel and
digital input channel.

2 μs

-117-

Chapter 3 Network Settings

Name Description
Default
Setting

Direction

Phase A ahead B

A/B-phase

The counter is increased when phase A is ahead of
phase B.

Pulse + direction

The counter is increased when phase B input level
is high.

CW/CCW

The counter is increased when phase A has
counts. Phase A

ahead B

Phase B ahead A

A/B-phase

The counter is increased when phase B is ahead of
phase A.

Pulse + direction

The counter is increased when phase B input level
is low.

CW/CCW

The counter is increased when phase B has
counts.

X00 Setting

Function

Selects the functions of X00 digital input terminal.

Normal input

Touch probe 1

Reset counter to 0

Preset counter

Door control

Touch probe
1

Polarity

Selects the effective polarity of X00 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

X01 Setting

Polarity

Function

Selects the functions of X01 digital input terminal.

Normal input

Touch probe 2

Reset counter to 0

Preset counter

Door control

Touch probe
2

Selects the effective polarity of
X01 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

X02 Setting

Polarity

Function

Selects the functions of X02 digital input terminal.

Normal input

Reset counter to 0

Preset counter

Door control

Normal input

Selects the effective polarity of
X02 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

-118-

Chapter 3 Network Settings

Name Description
Default
Setting

X03 Setting

Polarity

Function

Selects the functions of X03 digital input terminal.

Normal input

Reset counter to 0

Preset counter

Door control

Normal input

Selects the effective polarity of
X03 digital input.

High - Input high level is effective.

Low - Input low level is effective.

High

Y00 Setting

Polarity

Function

Sets the Y00 function of digital output terminal.

Normal output

Compare output 1

Compare
output 1

Energizes or disables the digital
output terminal Y00.

High - Energization when control
is set to 1.

Low - Energization when control
is set to 0.

High

Y01 Setting

Polarity

Function

Sets the Y01 function of digital output terminal.

Normal output

Compare output 2

Compare
output 2

Energizes or disables the digital
output terminal Y01.

High - Energization when control
is set to 1.

Low - Energization when control
is set to 0.

High

Y02 Setting

Polarity

Function
Sets the Y02 function of digital output terminal.

Normal output
Normal
output

Energizes or disables the digital
output terminal Y02.

High - Energization when control
is set to 1.

Low - Energization when control
is set to 0.

High

For the applications of the position module, see EtherCAT Remote Communication Application Manual.

-119-

Chapter 3 Network Settings

3.3.9 I/O Module

The procedure for adding the Inovance AM600-RTU-ECTA module is as follows:

1) Double-click Network Configuration. In the pop-up graphic configuration interface, click the
EtherCAT bus.

2) In the network device list, double-click the AM600-RTU-ECTA slave station to add it. (Note:
AM600_ EtherCAT_Slave is not recommended.)

3) Double-click the AM600-RTU-ECTA slave station. In the following red box, add the desired I/O module.

4) For the specific functions of each module, see EtherCAT Remote Communication Application Manual.

-120-

Chapter 3 Network Settings

3.3.10 Library (Implicit Variables)

1 Implicit Instance of Master Station

 An IoDrvEtherCAT implicit instance is created as long as the EtherCAT master station is inserted into the
device list. The instance name is the same as the device name in the device list.

NOTE

An implicit instance is automatically created, and cannot be defined in program; otherwise, the PLC
will encounter a running error.

The definition of IoDrvEtherCAT implicit instance is as follows:

IoDrvEtherCAT implicit instance

Input parameter Description

xRestart
Bus restart: In rising edge, the master station restarts, and all configuration
parameters are reloaded.

xStopBus
Bus stop: When the input value is true, the EtherCAT bus communication stops, and
a communication error occurs. To resume the communication, run xRestart to restart
the EtherCAT communication.

Output parameter Description

xConfigFinished
If the parameter value is true, the transmission of all configuration parameters is
complete. The communication is on-going.

xDistributedClockInSync

 If distributed clock (DC) is configured for the EtherCAT slave station, the EtherCAT
slave station parameters are set first when the bus starts. When parameter settings
are complete (xConfigFinished is changed to true), the clocks of slave and master
stations are adjusted. When the synchronization between master and slave station
clocks is successful, the value true is output. If loss of synchronization occurs due to a
bus fault during running, the value false is output. In the DC mode, the motion control
module can be started only when this parameter is changed to true; otherwise, the
position of motion axis may jump.

xError

If an error is detected during the start of EtherCAT master station or communication
is interrupted when the slave station communication state machine enters operation,
true is output because EtherCAT master station cannot receive any message (for
example, the connection is torn down). In this situation, the error reason can be
located in the diagnosis information or log of the master station.

IoDrvEtherCAT Example

EtherCAT_Master.xRestart := xRestart; Use the xRestart parameter to restart the master station.

EtherCAT_Master.xStopBus := xStop; Use the xStop parameter to stop the bus communication.

EtherCAT_Master();

xFinish:= EtherCAT_Master.xConfigFinished;
When the configuration parameters are successfully
downloaded, invoke the master station to obtain information.

Master Station Attributes

Attribute Description

AutoSetOperational
If this attribute is set to true, the master station always tries to restart the slave
station upon communication interruption.

Default value: FALSE

-121-

Chapter 3 Network Settings

Attribute Description

ConfigRead
If this attribute returns true, the configuration reading is completed. You can edit the
configuration. For example, you can add customized SDOs.

DCInSyncWindow

Time window condition for setting XDistributedClockInSync to true. The value of
XDistributedClockInSync is true only when the master station synchronization jitter
is within this window.

Default value: 50 μs

DCIntegralDivider
Integral divider of DC used for circuit control.

Default value: 20

DCPropFactor
Proportion factor of DC used for circuit control.

Default value: 25

DCSyncToMaster

Synchronization between DC and master station. If it is set to true, all slave
stations are synchronized with the master station, rather than the first slave station
synchronizing with PLC.

Default value: FALSE

DCSyncToMasterWithSysTime

Synchronization with the master station DC. If it is set to true, all slave stations
are synchronized with the master station system clock. The time read by
SysTimeRtcHighResGet can also be used to synchronize PLC with all EtherCAT slave
stations.

Default value: FALSE

EnableTaskOutputMessage

Generally, EtherCAT messages are sent by bus cycle task, while some messages
may be sent by each slave station output task. All outputs are written into the
bus cycle task, and all inputs will be read. In other tasks, outputs are sent one
more time so that they can be written into the corresponding slave stations
immediately. Therefore, the deadline should be shortened to ensure a fast writing.
When DC is available, some slave stations may encounter problems. For example,
synchronization between servo controller and synchronization interrupt is lost, but
the written time is used for internal synchronizer. In this situation, multiple write
access operations may exist in a cycle. If EnableTaskOutputMessage is set to false,
only the bus cycle task is used, but addition tasks will not affect messages.

Default value: TRUE.

FirstSlave Pointer of the first slave station under the master station.

FrameAtTaskStart

If FrameAtTaskStart is set to true, the frame content to the slave station will be sent
when the task starts, to ensure the minimum jitter. This command ensures the
smooth motion of the servo drive. If this flag is set to true, the output buffer frame is
written into the next cycle.

Default value: FALSE

LastInstance Pointer associated with the master station list -> previous master station.

LastMessage

This attribute with the EtherCAT latest message together return a character string. If
the startup is successful, "all slave stations completed" is returned. The function of
character string is the same as the diagnosis information displayed in the EtherCAT
master station editor in online mode.

NextInstance Pointer associated with the master station list -> next master station.

NumberActiveSlaves
This attribute returns the number of connected slave stations. If
StartConfigWithLessDevice is set to true, the number of devices can be determined.

OpenTimeout Timeout of opening the NMS. Default value: 4s

StartConfigWithLessDevice

This attribute can affect stack start action. If five servo controllers are configured,
but only three are connected, the EtherCAT stack stops immediately. However,
if StartConfigWithLessDevice in the first cycle is set to true, the stack still starts.
In the following scenario, if one mismatch is detected, the stack stops: Ten servo
controllers are configured, the number of connected controllers is changeable, and
the vendor ID and product ID of each slave station will be checked.

-122-

Chapter 3 Network Settings

If supported by the device, the interface provided by IIoDrvBusControl.library can be used to access the
EtherCAT device from external applications.

2 Implicit Instance of Slave Station

 An ETCSlave implicit instance is created as long as the EtherCAT slave station is inserted into the device
list. The instance name is the same as the device name in the device list.

The input and output parameters of instantiation objects are used for special purposes. For example,
during application running, the slave station status is obtained, switched, and checked by using the slave
station instances.

The definition of ETCSlave implicit instance is as follows:

ETCSlave implicit instance

Input parameter Description

xSetOperational
In rising edge, the slave station communication state machine is attempted to be set as ETC_
SLAVE_ OPERATIONAL.

Output parameter Description

wState

Return the current status of the slave station. The possible values include:

0: ETC_SLAVE_BOOT

1: ETC_SLAVE_INIT

2: ETC_SLAVE_PREOPERATIONAL

4: ETC_SLAVE_SAVEOPERATIONAL

8: ETC_SLAVE_OPERATIONAL

NOTE

The ETC_SLAVE_OPERATIONAL state indicates that configuration is completed. If a configuration
error occurs, the device may return to the previous state. The following is an example of IS620N slave
station.

ETCSlave Example

Taking 620N as an example, add the instance name 620N. Definition: nSlaveState: ETC_SLAVE_STATE;

Programming Description

IS620N(xSetOperational:= , wState=> nSlaveState);
By invoking the slave station IS620N implicit instance, the
slave station status is output to the nSlaveState variable.

Slave Station Attributes

Attribute Description

VendorID
After the EtherCAT master station starts, this attribute returns the vendor ID read from the
device.

ConfigVendorID This attribute reads the vendor ID from configuration.

ProductID
After the EtherCAT master station starts, this attribute returns the product ID read from the
device.

ConfigProductID This attribute reads the product ID from configuration.

SerialID After the EtherCAT master station starts, this attribute carries the device SN.

LastEmergency
If a message is received, the message is stored in the slave station. This attribute can be used
to read information from application. In addition, a log message is added.

file:///C:/Users/c3350/Desktop/%25e4%25b8%25ad%25e5%259e%258bPLC%25e7%25bc%2596%25e7%25a8%258b%25e8%25bd%25af%25e4%25bb%25b6%25e6%2589%258b%25e5%2586%258c1022(1)/codesys.chm::/core_IIoDrvBusControl_Library_home.htm

-123-

Chapter 3 Network Settings

If supported by the device, the interface provided by IIoDrvBusControl.library can be used to access the
EtherCAT device from external applications. After the vendor and product IDs are activated in advanced
settings, if the vendor ID does not match the configured vendor ID or the product ID does not match the
configured product ID, the master is stopped.

3 Checking All Slave Station Link Tables

A function block instance is created between each pair of EtherCAT master station and EtherCAT slave
station in implicit way. The instance monitors the status of each slave station. Therefore, this instance
must be invoked in application program. The slave station status is read by using wState. To simplify the
programming, all master and slave stations can be found in link tables. Therefore, all slave stations can be
checked cyclically by a simple WHILE.

The master and slave stations correspond to attributes NextInstance and LastInstance, respectively,
returning the pointers to next and previous stations. In addition, the FirstSlave attribute of master station
is effective. It provides the pointer to the first slave station.

Link Table Function Example

Check all slave station status. Definition: pSlave: POINTER TO ETCSlave;

Programming Description

pSlave := EtherCAT_Master.FirstSlave;

WHILE pSlave <> 0 DO

pSlave^();

IF pSlave^.wState = ETC_SLAVE_STATE.ETC_SLAVE_

OPERATIONAL THEN ;

END_IF

pSlave := pSlave^.NextInstance;

END_WHILE

The first slave station of the master station
is found by using EtherCAT_Master.
FirstSlave.

Instances are invoked in WHILE loop,
to determine wState. Then the status is
checked.

The pointer to the next slave station is
found by using pSlave^.NextInstance.

The pointer at the end of table is null, and
the loop is finished.

4 CoE IODrvEtherCAT Function Library

CoE function block: CANOPEN over EtherCAT

After EtherCAT configuration is enabled for IODrvEtherCAT.library of EtherCAT, the library is automatically
added to project, including the read/write function block. Therefore, the special parameters can be
checked and modified in online mode. When the CANOPEN over EtherCAT function block is used, multiple
functional modules can be invoked. Internal requests are processed in queue.

The CANOPEN over EtherCAT function block includes the following function blocks:

 ■ ETC_CO_SdoRead (retrieve parameter, of which the length may exceed four bytes)

 ■ ETC_CO_SdoRead4 (read parameter, of which the length does not exceed four bytes)

 ■ ETC_CO_SdoReadDword (read parameter, of which the value is stored in DWORD)

 ■ ETC_CO_SdoRead_Access (read all records)

 ■ ETC_CO_SdoRead_Channel (read slave station parameters)

 ■ ETC_CO_SdoWrite (write parameter, of which the length may exceed four bytes)

 ■ ETC_CO_SdoWrite4 (write parameter, of which the length does not exceed four bytes)

 ■ ETC_CO_SdoWriteDWord (value is written into DWORD)

 ■ ETC_CO_SdoWriteAccess (write slave station parameters)

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/codesys.chm::/core_IIoDrvBusControl_Library_home.htm

-124-

Chapter 3 Network Settings

ETC_CO_SdoRead

This functional module is provided by IODrvEtherCAT.library to read EtherCAT slave station parameters.
Different from ETC_CO_SdoRead4, this module supports the parameters longer than four bytes. The read
parameters are specified by object dictionary indexes and sub-indexes.

ETC_CO_SdoRead Function Block

Input parameter Description

xExecute
In the input rising edge, read slave station parameters. To obtain the storage unit of internal
channel, this instance must be invoked at least once by 'xExecute:= FALSE'.

xAbort If this parameter is true, the read process is aborted.

usiCom
Number of EtherCAT master stations: If only one EtherCAT master station is used, usiCom is 1. If
multiple master stations exist, the value of the first master station is 1, the value of the second
one is 2, and so on.

uiDevice

Slave station's physical address.

If the automatic configuration mode of the master station is disabled, you can configure special
address for the slave station. The address selected arbitrarily must be entered.

If the automatic configuration mode is enabled, the first slave station obtains address 1001. The
current slave station address can be checked in the Slave station configuration dialog box of
device editor.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in millisecond. If the read parameter is not executed within the
timeout, an error is prompted.

pBuffer
Data buffer pointer. Data buffer area refers to the storage area where the successfully
transmitted parameters are stored.

szSize Data buffer (see pBuffer) size, in bytes.

Output parameter Description

xDone The value is true when parameter reading is completed.

xBusy The value is true when parameter reading has not been completed.

xError The value is true if an error occurs. The eError parameter displays the error reason.

eError
The output (ETC_CO_ERROR) displays the error reason specified by xError. For example,
ETC_ CO_TIMEOUT indicates timeout error.

udiSdoAbort When an error occurs in device checking, this output provides more error information.

szDataRead Number of read bytes, namely, the maximum szSize (see input parameters).

-125-

Chapter 3 Network Settings

ENUM ETC_CO_ERROR

Errors Code Description

ETC_CO_NO_ERROR 0 No error

ETC_CO_FIRST_ERROR 5750 The error reason is stored in udiSdoAbort.

ETC_CO_OTHER_ERROR 5751 No master station is found.

ETC_CO_DATA_OVERFLOW 5752 ETC_CO_Expedited, of which the length is larger than 4.

ETC_CO_TIME_OUT 5753 Timeout interval.

ETC_CO_FIRST_MF 5770 Not in use.

ETC_CO_LAST_ERROR 5799 Not in use.

ETC_CO_SdoRead4

This functional module is provided by IODrvEtherCAT.library to read EtherCAT slave station parameters.
Different from ETC_CO_SdoRead, this functional module reads only the parameters smaller than four
bytes. The read parameters are specified by object dictionary indexes and sub-indexes.

ETC_CO_SdoRead4 Function Block

Input parameter Description

xExecute
In the input rising edge, read slave station parameters. To obtain the storage unit of internal
channel, this instance must be invoked at least once by 'xExecute:= FALSE'.

xAbort If this parameter is true, the read process is aborted.

usiCom
Number of EtherCAT master stations: If only one EtherCAT master station is used, usiCom is 1. If
multiple master stations exist, the value of the first master station is 1, the value of the second
one is 2, and so on.

uiDevice

Slave station's physical address.

If the automatic configuration mode of the master station is disabled, you can configure special
address for the slave station. The address selected arbitrarily must be entered.

If the automatic configuration mode is enabled, the first slave station obtains address 1001.
The current slave station address can be checked in the Slave station configuration dialog
box of device editor.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in millisecond. If the read parameter is not executed within the
timeout, an error is prompted.

Output parameter Description

wState

Return the current status of the slave station. The possible values include:

0: ETC_SLAVE_BOOT

1: ETC_SLAVE_INIT

2: ETC_SLAVE_PREOPERATIONAL

4: ETC_SLAVE_SAVEOPERATIONAL

8: ETC_SLAVE_OPERATIONAL

-126-

Chapter 3 Network Settings

ETC_CO_SdoRead4 Function Block

xDone The value is true when parameter reading is completed.

xBusy The value is true when parameter reading has not been completed.

xError The value is true if an error occurs. The eError parameter displays the error reason.

eError
The output (ETC_CO_ERROR) displays the error reason specified by xError. For example,
ETC_ CO_TIMEOUT indicates timeout error.

abyData
The read parameter data is copied to this 4-byte array.

If the first byte has been read, it is stored in the first index of the array. The 2 or 4-byte data is
copied to this array in Intel byte order.

usiDataLength Number of read bytes (1, 2, or 4).

ENUM ETC_CO_ERROR

Errors Code Description

ETC_CO_NO_ERROR 0 No error

ETC_CO_FIRST_ERROR 5750 The error reason is stored in udiSdoAbort.

ETC_CO_OTHER_ERROR 5751 No master station is found.

ETC_CO_DATA_OVERFLOW 5752 ETC_CO_Expedited, of which the length is larger than 4.

ETC_CO_TIME_OUT 5753 Timeout interval.

ETC_CO_FIRST_MF 5770 Not in use.

ETC_CO_LAST_ERROR 5799 Not in use.

ETC_CO_SdoReadDword

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoRead4, it reads
EtherCAT slave station parameters. However, the read data is copied to DWORD (dwData), rather than
array. Byte exchange is automatically carried out. Therefore, the read data can be used by subsequential
processes.

ETC_CO_SdoRead_Access

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoRead4, it reads
EtherCAT slave station parameters. All record indexes can be read by inputting xCompleteAccess (BOOL).
Therefore, xCompleteAccess must be set to true, and bySubIndex must be 0.

ETC_CO_SdoRead_Channel

The EtherCAT programming interface in EtherCAT configuration editor is used by the
ETC_CO_SdoRead_Channel function block of IODrvEtherCAT in CAN over EtherCAT.

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoRead_Access, it reads
EtherCAT slave station parameters.

However, it has an additional input byChannelPriority (BYTE) that specifies the channel and priority in
CoE email box message. The first 6 bits specify the channel, and the later 2 bits specify the priority.

ETC_CO_SdoWrite

This functional module is provided by IODrvEtherCAT.library to read EtherCAT slave station parameters.
Different from ETC_CO_SdoWrite 4, this functional module reads only the parameters larger than four
bytes. The written parameters are specified by object dictionary indexes and sub-indexes.

-127-

Chapter 3 Network Settings

ETC_CO_SdoWrite Function Block

Input parameter Description

xExecute
In the input rising edge, write slave station parameters. To obtain the storage unit of internal
channel, this instance must be invoked at least once by 'xExecute:= FALSE'.

xAbort If this parameter is true, the write process is aborted.

usiCom
Number of EtherCAT master stations: If only one EtherCAT master station is used, usiCom is 1. If
multiple master stations exist, the value of the first master station is 1, the value of the second
one is 2, and so on.

uiDevice

Slave station's physical address.

If the automatic configuration mode of the master station is disabled, you can configure special
address for the slave station. The address selected arbitrarily must be entered.

If the automatic configuration mode is enabled, the first slave station obtains address 1001.
The current slave station address can be checked in the Slave station configuration dialog
box.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in millisecond. If the write parameter is not executed within the
timeout, an error is prompted.

pBuffer
Data buffer pointer. Data buffer area refers to the storage area where the successfully
transmitted parameters are stored.

szSize Data buffer (see pBuffer) size, in bytes.

eMode

This input (enumeration: ETC_CO_MODE) defines the number of written bytes. The
possible values include ETC_CO_AUTO (automatic),ETC_CO_EXPEDITED (acceleration), and
ETC_ CO_ SEGMENTED (segmented). Generally, the ETC_CO_AUTO mode is used because the
data length is automatically matched in this mode.

Output parameter Description

xDone The value is true when parameter writing is completed.

xBusy The value is true when parameter writing has not been completed.

xError The value is true if an error occurs. The eError parameter displays the error reason.

eError
The output (ETC_CO_ERROR) displays the error reason specified by xError. For example,
ETC_ CO_TIMEOUT indicates timeout error.

udiSdoAbort When the device has an error, this output provides more error information.

szDataWritten Number of written bytes. After bytes are successfully written, it is set to szSize.

ENUM ETC_CO_MODE

Mode No. Description

AUTO 0 Automatic mode is selected.

EXPEDITED 1 Acceleration protocol is used.

-128-

Chapter 3 Network Settings

Mode No. Description

SEGMENTED 2
Segmented transmission
protocol is used.

ETC_CO_SdoWrite4

This functional module is provided by IODrvEtherCAT.library to read EtherCAT slave station parameters.
Different from ETC_CO_SdoWrite, this functional module reads only the parameters smaller than four
bytes. The written parameters are specified by object dictionary indexes and sub-indexes.

ETC_CO_SdoWrite4 Function Block

Input parameter Description

xExecute
In the input rising edge, write slave station parameters. To obtain the storage unit of internal
channel, this instance must be invoked at least once by 'xExecute:= FALSE'.

xAbort If this parameter is true, the write process is aborted.

usiCom
Number of EtherCAT master stations: If only one EtherCAT master station is used, usiCom is 1. If
multiple master stations exist, the value of the first master station is 1, the value of the second
one is 2, and so on.

uiDevice

Slave station's physical address.

If the automatic configuration mode of the master station is disabled, you can configure
special address for the slave station. The address selected arbitrarily must be entered.

If the automatic configuration mode is enabled, the first slave station obtains address 1001.
The current slave station address can be checked in the Slave station configuration dialog
box.

usiChannel Reserved for expansion.

wIndex Parameter index in the object dictionary.

bySubIndex Parameter sub-index in the object dictionary.

udiTimeout
You can set the timeout interval in millisecond. If the write parameter is not executed within
the timeout, an error is prompted.

abyData This array includes four written data records. The data must be stored in the Intel byte order.

usiDataLength Number of written bytes (1, 2, or 4).

Output parameter Description

xDone This output is set to true when parameter writing is completed.

xBusy The output is true if the write operation is not completed.

xError If an error occurs, this output is set to true. eError displays the error reason.

eError
This output (ETC_CO_ERROR) displays the error reason, identified as xError. For example,
ETC_ CO_TIMEOUT indicates timeout.

udiSdoAbort If the device has an error, this output provides more error information.

-129-

Chapter 3 Network Settings

ENUM ETC_CO_MODE

Mode No. Description

AUTO 0 Automatic mode is selected.

EXPEDITED 1 Acceleration protocol is used.

SEGMENTED 2 Segmented transmission protocol is used.

ETC_CO_SdoWriteDWord

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoWrite4, it writes
EtherCAT slave station parameters. However, the data to be written is output in DWORD format (dwData),
rather than array. Byte exchange is automatically carried out. The value to be written can be specified.

ETC_CO_SdoWriteAccess

This function block is provided by IODrvEtherCAT.library. Similar to ETC_CO_SdoWrite, it writes
EtherCAT slave station parameters.

All record indexes can be written by inputting xCompleteAccess (BOOL). Therefore, xCompleteAccess must
be set to true, and bySubIndex must be 0. However, it has an additional input byChannelPriority (BYTE)
that specifies the channel and priority in CoE email box message.

5 Direct Access to EtherCAT Slave Station Memory

Choose EtherCAT configuration editor > EtherCAT programming interface to directly access the EtherCAT
slave station memory.

Access EtherCAT slave station memory: ReadMemory and WriteMemory.

 ■ ReadMemory

This function block is in IODrvEtherCAT.library to read data in EtherCAT slave station memory.

ReadMemory Function Block

Input parameter Type Description

xExecute BOOL

Rising edge: action starts.

Falling edge: reset output.

If there is a falling edge before the function block completes action, the
output operation is performed in a normal way and a reset is performed
when the action is completed or aborted (xAbort). In this situation, the
related output values (xDone, xError, and iError) are output within a cycle.

xAbort BOOL
If the input is true, the action is aborted immediately and all outputs are
reset to the initial values.

usiCom USINT Master index 1: The first EtherCAT master station.

wSlaveAddress WORD Automatically created address or device physical address.

xAutoIncAdr BOOL Flag confirming that the address mode is used.

xBroadcast BOOL
If the card mode is used and the value is true, wSlaveAddress and
bAutoIncAdr will not be used.

-130-

Chapter 3 Network Settings

ReadMemory Function Block

uiMemOffset UINT Memory address offset.

iSize INT Read byte.

pDest POINTER TO BYTE Data storage and retrieve buffer.

udiTimeOut UDINT Operation timeout (ms)

Output parameter Type Description

xDone BOOL Action completed successfully.

xBusy BOOL Function block activated.

xError BOOL
TRUE: An error is generated and the function block aborts action; FALSE:
No error.

xAborted BOOL Abort action.

Example: Read register 0x130 (current state)

PROGRAM PLC_PRG

VAR

 etcreadmemory : ReadMemory;

 wStatus : WORD;

 xRead : BOOL;

END_VAR

etcreadmemory(xExecute := xRead, usiCom:=1, wSlaveAddress := 1002,

 xAutoIncAdr := FALSE, xBroadcast := FALSE, uiMemOffset := 16#130,

 iSize := 2, pDest := ADR(wStatus), udiTimeout := 500);

 ■ WriteMemory

This function block is in IODrvEtherCAT.library to write data into EtherCAT slave station memory.

WriteMemory Function Block

Input parameter Type Description

xExecute BOOL

Rising edge: action starts.

Falling edge: reset output.

If there is a falling edge before the function block completes action, the
output operation is performed in a normal way and a reset is performed
when the action is completed or aborted (xAbort). In this situation, the
related output values (xDone, xError, and iError) are output within a cycle.

xAbort BOOL
If the input is true, the action is aborted immediately and all outputs are
reset to the initial values.

usiCom USINT Master index 1: The first EtherCAT master station.

wSlaveAddress WORD Automatically created address or device physical address.

xAutoIncAdr BOOL Flag confirming that the address mode is used.

-131-

Chapter 3 Network Settings

WriteMemory Function Block

xBroadcast BOOL
If the card mode is used and the value is true, wSlaveAddress and
bAutoIncAdr will not be used.

uiMemOffset UINT Memory address offset.

iSize INT Write byte.

pDest POINTER TO BYTE Read data in and retrieve data from data buffer.

udiTimeOut UDINT Operation timeout (ms)

Output parameter Type Description

xDone BOOL Action completed successfully.

xBusy BOOL Function block activated.

xError BOOL
TRUE: An error is generated and the function block aborts action; FALSE:
No error.

xAborted BOOL Abort action.

Example: Write register 0x120 (control register)

PLC_PRG

VAR

 etcwritememory : WriteMemory;

 xWrite : BOOL;

 wCommand : WORD := 4; // set to safe operational

END_VAR

etcwritememory(xExecute := xWrite, usiCom:=1, wSlaveAddress := 1002,

 xAutoIncAdr := FALSE, xBroadcast := FALSE, uiMemOffset := 16#120,

 iSize := 2, pSrc := ADR(wCommand), udiTimeout := 500);

3.4 Modbus Editor

Click the PLC in Network Configuration. The master and slave station windows supported by PLC are
displayed. As shown in the following figure, select the check box before the master or slave you want to
enable, and double-click MODBUS in Network Devices List on the right to add the slave to the network.

Figure 3-29 Modbus Configuration Example

-132-

Chapter 3 Network Settings

The device tree corresponding to the Modbus configuration is displayed on the left of the interface, shown
as follows:

Figure 3-30 Device tree corresponding to Modbus configuration
AM600 supports two channels of Modbus serial port communication, matching serial port 0 and serial
port 1. Both ports support standard Modbus RTU protocol, and can be configured as master or slave
station. They support 6 baud rates, including 4800, 9600, 19200, 38400, 57600, and 115200.

The variable ranges that can be accessed by the master station are as follows:

1) All bit variable operations (01 02 05 0f) can read and write 65535 bit variables from %QX0.0 to
%QX8191.7.

2) All register variable operations (03 04 06 10) can read and write 65536 register variables from MW0 to
MW65535.

3) Inovance HMI can access AM600 system variables SM0-SM7999 and register variables SD0-SD7999.

3.4.1 Modbus Master Station Configuration

When a serial port is used as master station, configure Modbus master station and TCP of Modbus master
station in the Modbus device editor, including the following parameters:

Modbus master configuration

Figure 3-31  Modbus master configuration

-133-

Chapter 3 Network Settings

Master configuration parameters

Parameter Function

COM Port
COM port 0 or 1, which is used to establish a physical connection to
the master

Baudrate Communication rate

Purify Method of verifying communication frames

Data Bit Actual data bits included in communication frames

Stop Bit Last bit in a single packet during communication

TransmissionMode RTU

Time Between
Frames

The time for the master to wait for the next request data frame after
receiving a response data frame

Example:

Parameter Value

COM Port 0

Baudrate 115200

Purify EVEN

Data Bit 8

Stop Bit 1

TransmissionMode RTU

Time Between Frames 2 ms

3.4.2 Modbus Master-Slave Connection Configuration

When a serial port functions as the master station, the Modbus slave station is configured in Modbus
device editor, involving the following parameters:

Figure 3-32 Modbus slave station configuration when port functions as master
Slave configuration parameters

Parameter Function

Unit ID ID of the slave station, ranging from 1 to 247

Timeout
After sending data, the master reports receiving timeout if no
data is received within this timeout period

Slave Enable Variable
Enables the slave station by programming and starts to send
frame to the slave station. It is effective when it is set to ON.

-134-

Chapter 3 Network Settings

Example:

Parameter Value

Unit ID 11

Timeout 1000 ms

Slave Enable Variable 1001

Modbus slave station communication configuration when port functions as master

Figure 3-33 Modbus slave station communication configuration when port functions as master
In the previous figure, each channel represents an independent Modbus request. The third column
defines the cyclic operation on a write-single register (function code: 06) to write a word to the register
with an offset of 0x0006.

After you click Add, a dialog box for adding a channel for the Modbus slave station is displayed. Click OK
to create a channel.

Select a channel from the Modbus slave channel list and click Edit... The Modbus Channel Set dialog
box is displayed. Change the values of parameters to modify the channel settings. Click OK to update the
channel settings. You can set the following parameters to add or edit a channel:

Figure 3-34 Modbus slave station communication configuration when port functions as master

-135-

Chapter 3 Network Settings

Modbus communication parameter settings

Parameter Function

Name Channel name, in the string format.

Access Type

Read Coils (Function Code 01).

Read Discrete Inputs (Function Code 02).

Read Holding Registers (Function Code 03).

Read Input Registers (Function Code 04).

Write Single Coil (Function Code 05).

Write Single Register (Function Code 06).

Write Multiple Coils (Function Code 15).

Write Multiple Registers (Function Code 16).

Trigger

Cyclic: Requests are triggered
periodically.

Cycle Time: time for re-execution.

Level Trigger: Requests are
triggered when a change is made
during programming.

Trigger Variable（SM）: SM element that implements trigger.
After trigger is successful, the element is reset automatically.

Repeated
A request is resent for the specified times when no response frame is received from the slave upon a
communication error.

Comment Brief text description about data.

Read
Register

Offset Head address of the registers to be read.

Length Number of registers to be read.

Error
Handling

Keep Last Value: The last valid value is kept.

0: All the values are zeroed.

Maximum
number of
registers to
be written

Offset Head address of the registers to be written.

Length Number of registers to be written.

The valid range of the Length parameter depends on the following parameters:

Function Code Access Type Register Count

01 Read Coils. 1 to 2000

02 Read Discrete Inputs. 1 to 2000

03 Read Holding Registers. 1 to 125

04 Read Input Registers. 1 to 125

05 Writes one coil. 1

06 Writes one register. 1

15 Writes multiple coils. 1 to 1968

16 Write Multiple Registers. 1 to 123

-136-

Chapter 3 Network Settings

Modbus Slave Internal I/O Mapping

Figure 3-35 Modbus slave internal I/O mapping when port functions as master station
Map variables to I/Q addresses by using the input assistant or entering an instance variable path.

3.4.3 Modbus Master Station Broadcast Configuration

When the Modbus master station is connected to multiple Modbus slave stations, and all Modbus slave
stations receive write operation, the Modbus master station needs to carry out broadcast.

Figure 3-36 Broadcast configuration when port functions as master
By clicking Add on the broadcast communication setting tab, the Modbus Broadcast Channel Set
dialog box is displayed, including the parameters of Name, Access Type, Trigger Variable (SM), Repeated,
Comment, and Write Register (Offset and Length).

The access type includes multiple function codes, including Write Single Coil (Function Code 05), Write
Single Register (Function Code 06), Write Multiple Coils (Function Code 15), and Write Multiple Registers
(Function Code 16).

 ■ Trigger Variable: Condition that triggers the Modbus master to start communication. The Modbus
master can perform broadcast communication only when the trigger variable is true. The trigger
variable needs to be reset during programming.

 ■ Repeated: Number of resend times after a send is completed. The number of send failures can be
reduced by setting the number of resend times.

-137-

Chapter 3 Network Settings

3.4.4 Modbus Slave Station Configuration

Figure 3-37 Configuration when port functions as slave
Among the Modbus slave station configuration parameters, the serial port configuration parameters have
the same meanings as those of Modbus master station. The Modbus slave station number refers to the
local device station number. Time between frame indicates the delay of responding to the master after the
frame from master is received.

3.4.5 Modbus Device Diagnosis

The Modbus master station diagnosis information includes the communication configurations of faulty
slave station and the fault.

Figure 3-38 Modbus master diagnosis

Figure 3-39 Modbus slave station diagnosis when port functions as master

-138-

Chapter 3 Network Settings

Figure 3-40 Device diagnosis when port functions as slave

3.4.6 Common Errors of Modbus

The following errors are frequently encountered during Modbus master-slave connection:

1. The configurations of Modbus master and Modbus slave are inconsistent, causing a communication
failure between master and slave.

2. An error response is returned when the Modbus master accesses a Modbus slave through an invalid
address.

3. The Modbus master receives an error response from the Modbus slave when it attempts to write a
register of the Modbus slave that only supports the read operation.

Incorrect response frame

An error response consists of a transaction metadata identifier, protocol identifier, length, slave address,
command code+0x80, error code, and cyclic redundancy check (CRC).

The preceding error frame is applicable to all command frames.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response
transaction processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5 Command code+0x80 1 Command error code

6 Error code 1 The value ranges from 1 to 4.

3.4.7 Modbus Variable Addressing

Coil: Bit variables, indicated by 0 or 1. The PLC includes Q and SM area variables.

Variable Command Code Offset Number of Coils Description

QW0-QW511 0X01, 0x05, 0x0f 0 8192 Accessible by standard Modbus protocols.

SM0-SM7999 0X31, 0x35, 0x3f 0 8000
Use different function codes from Inovance HMI
dedicated protocol.

-139-

Chapter 3 Network Settings

Register: 16-bit (words) variable. The PLC includes M and SD area variables.

Variable Command Code Offset Number of Registers Description

MW0-MW65535 0X03, 0x06, 0x10 0 65536 Accessible by standard Modbus protocols.

SD0-SD7999 0X33, 0x36, 0x40 0 8000
Use different function codes from Inovance
HMI dedicated protocol.

Note:

Inovance HMI dedicated protocol uses different function codes: For the access to SM, use 0x31, 0x35 and
0x3f (0x30 added based on bit variable access). For the access to SD, use 0x33, 0x36, and 0x40 (0x30 added
based on register variable access).

AM600 soft elements include Q, I, and M areas, which can be accessed by bit, byte word, and dual-word.
For example, %QX, %QB, %QW, and %QD are converted as follows:

QB0 = (QX0.0-QX0.7)

QW0 = (QB0-QB1) = ((QX0.0-QX0.7) + (QX1.0-QX1.7));

QD0 = (QW0-QW1) = (QB0-QB4) = ((QX0.0-QX0.7) + (QX1.0-QX1.7)+(QX2.0-QX2.7)+(QX3.0-QX3.7))

-140-

Chapter 3 Network Settings

Register Addressing Rule

Addressing
by bit

Addressing
by byte

Addressing
by word

Addressing
by Dword

Addressing
by bit

Addressing
by byte

Addressing
by word

Addressing
by Dword

QX0.0

QB0

QW0

QD0

MX0.0

MB0

MW0

MD0

QX0.1 MX0.1

QX0.2 MX0.2

QX0.3 MX0.3

QX0.4 MX0.4

QX0.5 MX0.5

QX0.6 MX0.6

QX0.7 MX0.7

QX1.0

QB1

MX1.0

MB1

QX1.1 MX1.1

QX1.2 MX1.2

QX1.3 MX1.3

QX1.4 MX1.4

QX1.5 MX1.5

QX1.6 MX1.6

QX1.7 MX1.7

QX2.0

QB2

QW1

MX2.0

MB2

MW1

QX2.1 MX2.1

QX2.2 MX2.2

QX2.3 MX2.3

QX2.4 MX2.4

QX2.5 MX2.5

QX2.6 MX2.6

QX2.7 MX2.7

QX3.0

QB3

MX3.0

MB3

QX3.1 MX3.1

QX3.2 MX3.2

QX3.3 MX3.3

QX3.4 MX3.4

QX3.5 MX3.5

QX3.6 MX3.6

QX3.7 MX3.7

QX4.0
QB4 QW2 QD1

MX4.0
MB4 MW2 MD1

QX4.1 MX4.1

The head address of AM600's Word register contains an even number of bytes. The head address of DWord
register contains an even number of words. The index number is 2 times, facilitating address calculation.

-141-

Chapter 3 Network Settings

3.4.8 Modbus Communication Frame Format

The 0x01 command code is used to read the Q variable.

The 0x31 command code is used to read the SM variable.

Request frame format: slave address + 0x01 + head address of coils + number of coils + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x01/0x31 (command
code)

1 The instruction is to read coils.

3 Head address of coils 2 Big-endian. See "Coil addressing".

4 Number of coils 2 Big-endian (N).

5 CRC code 2 Big-endian.

Response frame format: slave address + 0x01 + number of bytes + state of coils + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x01/0x31 (command
code)

1 The instruction is to read coils.

3 Number of bytes 1 The value is (N + 7)/8.

4 Coil status (N + 7)/8

Eight coils are indicated by one byte. If the last byte has less
than eight bits, enter 0 for undefined bits. The first eight
coils are indicated by the first byte, and the coil with the
smallest address is indicated by the least significant bit.

5 CRC code 2 Big-endian.

The 0x03 command code is used to read the M variable.

The 0x33 command code is used to read the SD variable.

Request frame format: slave address + 0x03 + head address of registers + number of registers + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x03/0x33 (command
code)

1 The instruction is to read registers.

3 Head address of registers 2 Big-endian. See "Register addressing".

4 Number of registers 2 Big-endian (N).

5 CRC code 2 Big-endian.

Response frame format: slave address + 0x03 + number of bytes + register value + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x03/0x33 (command
code)

1 The instruction is to read registers.

3 Number of bytes 1 The value is N x 2

4 Register value N x 2
One register value is indicated by two bytes. It is big-endian.
The register with a smaller address is indicated by the first
byte.

5 CRC code 2 Big-endian.

-142-

Chapter 3 Network Settings

The 0x05 command code is used to read the Q variable.

The 0x35 command code is used to read the SM variable.

Request frame format: slave address + 0x05 + head address of the coil + state of the coil + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x05/0x35 (command
code)

1 The instruction is to write a single coil.

3 Address of the coil 2 Big-endian. See "Coil addressing".

4 Coil status 2 Big-endian. A non-zero value is valid.

5 CRC code 2 Big-endian.

Response frame format: slave address + 0x05 + head address of the coil + state of the coil + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x05/0x35 (command
code)

1 The instruction is to write a single coil.

3 Address of the coil 2 Big-endian. See "Coil addressing".

4 Coil status 2 Big-endian. A non-zero value is valid.

5 CRC code 2 Big-endian.

The 0x06 command code is used to read the M variable.

The 0x36 command code is used to read the SD variable.

Request frame format: slave address + 0x06 + head address of the register + register value + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x06/0x36 (command
code)

1 The instruction is to write a single register.

3 Address of the register 2 Big-endian. See "Register addressing".

4 Register value 2 Big-endian. A non-zero value is valid.

5 CRC code 2 Big-endian.

Response frame format: slave address + 0x06 + head address of the register + register value + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x06/0x36 (command
code)

1 The instruction is to write a single register.

3 Address of the register 2 Big-endian. See "Register addressing".

4 Register value 2 Big-endian. A non-zero value is valid.

5 CRC code 2 Big-endian.

The 0x0f command code is used to write multiple consecutive Q variables.

The 0x3f command code is used to write multiple consecutive Q variables.

Request frame format: slave address + 0x0f + head address of coils + number of coils + number of bytes
+ state of coils + CRC code

-143-

Chapter 3 Network Settings

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2
0x0f/0x3f (command
code)

1 The instruction is to write multiple coils.

3 Head address of coils 2 Big-endian. See "Coil addressing".

4 Number of coils 2 Big-endian. The maximum of N is 1968.

5 Number of bytes 1 The value is (N + 7)/8.

6 Coil status (N + 7)/8

Eight coils are indicated by one byte. If the last byte has less
than eight bits, enter 0 for undefined bits. The first eight coils
are indicated by the first byte, and the coil with the smallest
address is indicated by the least significant bit.

7 CRC code 2 Big-endian.

Response frame format: slave address + 0x05 + head address of coils + number of coils + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2 0x0f/0x3f (command code) 1 The instruction is to write multiple coils.

3 Head address of coils 2 Big-endian. See "Coil addressing".

4 Number of coils 2 Big-endian.

5 CRC code 2 Big-endian.

The 0x10 command code is used to write multiple consecutive M variables.

The 0x40 command code is used to write multiple consecutive SD variables.

Request frame format: slave address + 0x10 + head address of registers + number of registers + number of
bytes + register value + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2 0x10/0x40 (command code) 1 The instruction is to write multiple registers.

3 Head address of registers 2 Big-endian. See "Register addressing".

4 Number of registers 2 Big-endian. The maximum of N is 120.

5 Number of bytes 1 The value is N x 2

6 Register value N x 2 (N x 4)

7 CRC code 2 Big-endian.

Response frame format: slave address + 0x05 + head address of coils + number of coils + CRC code

No. Definition of Data (Byte) Number of Bytes Description

1 Slave address 1 Value range: 1 to 247.

2 0x10/0x40 (command code) 1 The instruction is to write multiple registers.

3 Head address of registers 2 Big-endian. See "Register addressing".

4 Number of registers 2 Big-endian. The maximum of N is 120.

5 CRC code 2 Big-endian.

-144-

Chapter 3 Network Settings

3.5 Using Free Protocols on COM Ports

3.5.1 Overview

This section describes communication using free protocols on the COM ports of a medium-sized PLC. The
applicable versions are as follows:

Device Name Version

InoProShop 1.2.0 and later

PLC firmware 1.19.70 and later

3.5.2 Serial Hardware Port

AM600 supports communication using two RS485 COM ports, which are port 0 and port 1, with support for
free protocols.

Port Channel Pin Definition

5
4

1
2
3

6
7
8
9

COM0 (RS485)

1 RS485-

2 RS485+

5 GND

COM1 (RS485)

6 RS485-

9 RS485+

3 GND

AC810 supports RS485 and RS232 communication. For I/O COM ports, pins 1, 3, and 5 output DI signals,
and pins 2 and 4 output DO signals.

Description Function Signal No. I/O COM Port No. Signal Function Description

ON: power-on;
OFF: power-off

Power-on
signal

 1

1 2

3 4

5 6

7 8

9 10

11 12

2 P_STATUS
Indicator turn-
on signal upon

power- on

Output
after the

controller is
powered on

Retentive at
power failure
upon ON-OFF

switch

Power failure
detection

signal
P_OK 3 4 P_STATUS

Running status
signal

Output
after the

controller is
powered on

OFF: RUN; ON:
STOP

RUN/STOP RUN 5 6 0 V Output common --

--
Input

common
0 V 7 8 GND

Communication
reference ground

--

-- RS485+ 485+ 9 10 232R RS232 receiving --

-- RS485- 485- 11 12 232T RS232 sending --

-145-

Chapter 3 Network Settings

-145-

3.5.3 COM Port Configuration
This section shows how to configure COM1 of the PLC to use free protocols.

3.5.4 Communication Configuration

The following table lists the parameters that need to be set.

Parameter Definition

COM Port Number COM port 0 or 1, which is used to establish a physical connection to the master

Baudrate Communication rate

Parify Method of verifying communication frames

Data Bits Actual data bits included in communication frames

Stop Bits Last bit in a single packet during communication

The communication format used by the COM port with Free Protocol selected must be consistent with
that of the connected slave, for example, 9600 8 E 1.

3.5.5 Registers for Data Sending and Receiving

 ■ Register Type: The options are %MW and SD. The SD option is only applicable to the AM600 series.

 ■ Receive Count Register: records the length (in bytes) of data frames received from external devices.

In Figure 3-41, the %MW0 setting indicates the length of data frames received from external devices.
MW0 needs to be cleared manually; otherwise, its value keeps increasing until it is cleared when the
value of Max Receive Length is reached. In this case, the receive buffer is overwritten from the start.

 ■ Receive Buffer Address: records the head address (in bytes) of the buffer that receives data from
external devices.

-146-

Chapter 3 Network Settings

For example, if the receive length is %MW0 = 10, the receive buffer ranges from %MW1 to %MW5. One
%MW occupies 2 bytes.

 ■ Send Count Register: records the length (in bytes) of data that the PLC sends to external devices.
Here, the setting is %MW300.

 ■ Send Buffer Address: records the head address (in bytes) of the buffer that sends data.

For example, if the send length is %MW300 = 8, the send buffer ranges from %MW301 to %MW304.
Data is automatically sent when %MW300 is not 0. %MW300 is automatically cleared after data is
sent.

Figure 3-41 shows the free protocol configuration for a COM port.

Figure 3-41 Free protocol configuration

Parameter Definition

Register Type The options are %MW and SD.

Receive Count Register This register displays the number of received bytes when data is received.

Receive Buffer Address This parameter indicates the head address of the buffer that receives data.

Max Receive Length This parameter indicates the maximum number of buffered bytes.

Send Count Register
Data is sent when this parameter is not set to 0. Its value is automatically reset after
data is sent.

Send Buffer Address This parameter indicates the head address of the buffer that sends data.

Max Send Length This parameter indicates the maximum number of data bytes sent at a time.

The following is an example.

The process based on the preceding settings is as follows:

1) When data is received, %MW0 displays the number of received data bytes, and the received data is
stored in the registers starting from the head address %MW1.

2) Each time after data is received, %MW0 must be cleared manually so that data is buffered all over
again starting from %MW1. If %MW0 is not cleared, data is buffered in sequence.

3) When the length of received data exceeds the value 256 (bytes) of Max Receive Length, %MW0 starts
counting again and the received data is stored from the head address %MW1.

4) Before data is sent, the data is written to the registers starting from the head address %MW301.

5) After the data (bytes) to be sent is written to %MW300, data starting from %MW301 is sent.

-147-

Chapter 3 Network Settings

6) %MW300 is automatically cleared after data is sent.

7) When the number of bytes written to %MW300 exceeds the value 256 of Max Send Length, data is
sent based on Max Send Length.

3.5.6 Data Send/Receive Tests Through the COM Port Debugging Assistant

1) Use the COM port debugging assistant to send "34 35 36 37".

The length %MW0 of the data received by the PLC is 4 bytes.

The buffer that receives data ranges from %MW1 to %MW2.

%MW0 must be manually cleared before data is received again.

2) Send data from the PLC.

When the length %MW300 of data received by the PLC is greater than 0, for example, 6 bytes, the send
buffer ranges from %MW301 to %MW303. %MW300 is automatically cleared after data is successfully
sent.

-148-

Chapter 3 Network Settings

3.6 Modbus TCP Device Editor

Click a PLC on the Network Configuration tab page. A window is displayed, allowing you to enable the
master and slaves supported by the CPU, as shown in Figure 3-42. Select the check box before the master
or slave you want to enable, and double-click MODBUS_TCP in Network Devices List on the right to add
the slave to the network.

Figure 3-42 Modbus TCP configuration example
The device tree corresponding to Modbus TCP configuration is displayed on the left, as shown in
Figure 3-43.

Figure 3-43 Device tree corresponding to Modbus TCP configuration

AM600 supports Modbus TCP communication. You can configure the Modbus TCP master and slaves.

-149-

Chapter 3 Network Settings

3.6.1 Configuring a Modbus TCP Master

Modbus TCP master configuration

Figure 3-44 Modbus TCP master configuration
Time between Frames indicates the time for the master to wait for the next request data frame after
receiving a response data frame. This parameter can be used to adjust the data exchange rate.

3.6.2 Configuring Modbus TCP Master-Slave Connection

Modbus TCP master-slave connection configuration

Figure 3-45 Modbus TCP master-slave connection configuration

Parameters:

Parameter Definition

Slave IP Address IP address of the Modbus TCP slave used to connect to the master.

Port TCP port of the Modbus TCP slave used to connect to the master.

Unit ID Protocol address of the Modbus TCP slave used to connect to the master.

Timeout Enable the timeout feature and specify the timeout period, in milliseconds.

Slave Enable Variable The SM element controls the communication initiated to the slave.

Example:

Parameter Value

Slave IP Address 192.168.10.16

Port 502

Unit ID 05

Timeout 1000

Slave Enable Variable 3001

-150-

Chapter 3 Network Settings

Configuring Modbus TCP master-slave communication

Figure 3-46 Modbus TCP master-slave communication configuration

In Figure 3-46, each channel represents an independent Modbus TCP request. The Access Type column
defines the cyclic operation on a read holding register (parameter number: 03) to read the register value
with a length of 7 from the register with an offset of 0x0012.

Click Add.... The Modbus Channel Set dialog box is displayed, allowing you to add a channel to the
Modbus TCP slave. Complete settings and click OK to create a channel.

Select a channel from the Modbus TCP slave channel list and click Edit... The Modbus Channel Set dialog
box is displayed. Change the values of parameters to modify the channel settings. Click OK to update the
channel settings.

You can set the following parameters to add or edit a channel:

Figure 3-47 Dialog box for Modbus TCP master-slave communication configuration

-151-

Chapter 3 Network Settings

Modbus communication parameter settings

Parameter Definition

Name Channel name, in the string format.

Access Type

Read Coils (Function Code 01).

Read Discrete Inputs (Function Code 02).

Read Holding Registers (Function Code 03).

Read Input Registers (Function Code 04).

Write Single Coil (Function Code 05).

Write Single Register (Function Code 06).

Write Multiple Coils (Function Code 15).

Write Multiple Registers (Function Code 16).

Trigger
Cyclic: Requests are triggered periodically. Cycle Time: time for re-execution.

Trigger by level: Requests are triggered
when a change is made during programming.

Trigger variable (SM): SM element that
implements trigger.

Repeated
A request is resent for the specified times when no response frame is received from the slave upon
a communication error.

Comment Brief text description about data.

Read Register

Offset Head address of the registers to be read.

Length Number of registers to be read.

Error Handling
Keep Last Value: The last valid value is kept.

0: All the values are zeroed.

Write Register

Offset Head address of the registers to be written.

Length Number of registers to be written.

The valid range of the Length parameter depends on the following parameters:

Parameter Number Access Type Register Count

01 Read Coils 1 to 2000

02 Read Discrete Inputs 1 to 2000

03 Read Holding Registers 1 to 125

04 Read Input Registers 1 to 125

05 Write Single Coil 1

06 Write Single Register 1

15 Write Multiple Coils 1 to 1968

16 Write Multiple Registers 1 to 123

-152-

Chapter 3 Network Settings

Modbus TCP slave internal I/O mapping

Figure 3-48 Internal I/O mapping of Modbus TCP master-slave connection

Map variables to I/Q addresses by using the input assistant or entering an instance variable path.

3.6.3 Configuring a Modbus TCP Slave

Modbus TCP slave configuration

Figure 3-49 Modbus TCP slave configuration

Parameters:

Parameter Definition

Slave Port TCP port of a Modbus TCP slave.

Time Between Frames
Delay for the Modbus TCP slave to return a response frame after receiving a communication
frame.

Example:

Parameter Value

Slave Port 502

Time Between Frames 1

-153-

Chapter 3 Network Settings

3.6.4 Diagnosing Modbus TCP Devices

Modbus TCP master diagnosis

Figure 3-50 Modbus TCP master diagnosis

Figure 3-51 Modbus TCP master-slave connection diagnosis
Modbus TCP slave diagnosis

Figure 3-52 Modbus TCP slave diagnosis

3.6.5 Common Errors of Modbus TCP

The following errors are frequently encountered during Modbus TCP master-slave connection:

1. The IP addresses configured for Modbus TCP master-slave connection are incorrect, causing a
communication failure.

2. An error response is returned when the Modbus TCP master accesses a slave through an invalid
address.

3. The Modbus TCP master receives an error response from the slave when it attempts to write a register
of the slave that only supports the read operation.

An error frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
command code+0x80, error code, and cyclic redundancy check (CRC).

-154-

Chapter 3 Network Settings

The preceding error frame is applicable to all command frames.

No. Definition of Data (Byte) Number of Bytes Description

1 Transaction metadata identifier 2
Identifier of Modbus request/response transaction
processing

2 Protocol identifier 2 Modbus protocol if the value is 0

3 Length 2 Number of the following bytes

4 Slave address 1 Value range: 1 to 247

5 Command code+0x80 1 Command error code

6 Error code 1 Value range: 1 to 4

3.6.6 Modbus TCP Communication Frame Format

The 0x01 command code is used to read the Q variable.

The 0x31 command code is used to read the SM variable.

A request frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x01, head address of coils, and number of coils.

No. Definition of Data (Byte) Number of Bytes Description

1 Transaction metadata identifier 2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5 0x01/0x31 (command code) 1 The command is to read coils.

6 Head address of coils 2 Big-endian. See "Coil addressing".

7 Number of coils 2 Big-endian (N).

A response frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x01, number of bytes, and coil status.

No. Definition of Data (Byte) Number of Bytes Description

1 Transaction metadata identifier 2
Identifier of Modbus request/response
transaction processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5 0x01/0x31 (command code) 1 The command is to read coils.

6 Number of bytes 1 The value is (N + 7)/8.

7 Coil status (N + 7)/8

Eight coils are indicated by one byte. If the last
byte has less than eight bits, enter 0 for undefined
bits. The first eight coils are indicated by the first
byte, and the coil with the smallest address is
indicated by the least significant bit.

The 0x03 command code is used to read the M variable.

The 0x33 command code is used to read the SD variable.

A request frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x03, head address of registers, and number of registers.

-155-

Chapter 3 Network Settings

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x03/0x33 (command
code)

1 The command is to read registers.

6 Head address of registers 2 Big-endian. See "Register addressing".

7 Number of registers 2 Big-endian (N).

A response frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x03, number of bytes, and register value.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x03/0x33 (command
code)

1 The command is to read registers.

6 Number of bytes 1 The value is N x 2

7 Register value N x 2
One register value is indicated by two bytes. It is big-
endian. The register with a smaller address is indicated by
the first byte.

The 0x05 command code is used to read the Q variable.

The 0x35 command code is used to read the SM variable.

A request frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x05, coil address, and coil status.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x05/0x35 (command
code)

1 The command is to write a single coil.

6 Address of the coil 2 Big-endian. See "Coil addressing".

7 Coil status 2 Big-endian. A non-zero value is valid.

A response frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x05, coil address, and coil status.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

-156-

Chapter 3 Network Settings

No. Definition of Data (Byte) Number of Bytes Description

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x05/0x35 (command
code)

1 The command is to write a single coil.

6 Address of the coil 2 Big-endian. See "Coil addressing".

7 Coil status 2 Big-endian. A non-zero value is valid.

The 0x06 command code is used to read the M variable.

The 0x36 command code is used to read the SD variable.

A request frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x06, register address, and register value.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x06/0x36 (command
code)

1 The command is to write a single register.

6 Address of the register 2 Big-endian. See "Register addressing".

7 Register value 2 Big-endian. A non-zero value is valid.

A response frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x06, register address, and register value.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x06/0x36 (command
code)

1 The command is to write a single register.

6 Address of the register 2 Big-endian. See "Register addressing".

7 Register value 2 Big-endian. A non-zero value is valid.

The 0x0f command code is used to write multiple consecutive Q variables.

The 0x3f command code is used to write multiple consecutive Q variables.

A request frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x0f, head address of coils, number of coils, number of bytes, and coil status.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

-157-

Chapter 3 Network Settings

No. Definition of Data (Byte) Number of Bytes Description

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x0f/0x3f (command
code)

1 The command is to write multiple coils.

6 Head address of coils 2 Big-endian. See "Coil addressing".

7 Number of coils 2 Big-endian. The maximum of N is 1968.

8 Number of bytes 1 The value is (N + 7)/8.

9 Coil status (N + 7)/8

Eight coils are indicated by one byte. If the last byte has
less than eight bits, enter 0 for undefined bits. The first
eight coils are indicated by the first byte, and the coil with
the smallest address is indicated by the least significant
bit.

A response frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x05, head address of coils, and number of coils.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x0f/0x3f (command
code)

1 The command is to write multiple coils.

6 Head address of coils 2 Big-endian. See "Coil addressing".

7 Number of coils 2 Big-endian.

The 0x10 command code is used to write multiple consecutive M variables.

The 0x40 command code is used to write multiple consecutive SD variables.

A request frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x10, head address of registers, number of registers, number of bytes, and register value.

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x10/0x40 (command
code)

1 The command is to write multiple registers.

6
Head address of
registers

2 Big-endian. See "Register addressing".

7 Number of registers 2 Big-endian. The maximum of N is 120.

8 Number of bytes 1 The value is N x 2

9 Register value N x 2 (N x 4)

A response frame consists of a transaction metadata identifier, protocol identifier, length, slave address,
0x05, head address of coils, and number of coils.

-158-

Chapter 3 Network Settings

No. Definition of Data (Byte) Number of Bytes Description

1
Transaction metadata
identifier

2
Identifier of Modbus request/response transaction
processing.

2 Protocol identifier 2 Modbus protocol if the value is 0.

3 Length 2 Number of the following bytes.

4 Slave address 1 Value range: 1 to 247.

5
0x10/0x40 (command
code)

1 The command is to write multiple registers.

6 Head address of registers 2 Big-endian. See "Register addressing".

7 Number of registers 2 Big-endian. The maximum of N is 120.

3.7 CANopen Network

CANopen Bus Overview

CANopen is the industrial communication protocol family for distributed automatic control devices based
on the CAN bus. CANopen is promoted by CAN in Automation (CiA) and was standardized at the end of
2002, with a standard number of CENELEC EN 50325-4. CANopen defines application-layer protocols,
communication-layer protocols, and multiple application protocols. Figure 3-53 shows the overall
architecture of CANopen.

Figure 3-53  Overall architecture of CANopen
The application layer provides applications with acknowledged and unacknowledged services and
defines communication objects. Those services can be used to request data from a server.

Communication objects are used during data exchange. They are used to exchange process data and
service data, manage processes or synchronize the system clock, manage error statuses, and control
and monitor node statuses. A communication object is defined by a structure, transmission type, and
CAN identifier. The typical parameters of communication objects include the CAN identifier for data
transmission, message transmission type, and disable time or event time. The parameters are defined in
communication protocols.

-159-

Chapter 3 Network Settings

For each CANopen device, the main data structure is an object dictionary, which is the primary data
exchange medium for the communication between the application layer and CAN bus. Object dictionary
portals can be accessed from the application layer and CAN bus through special messages. Those portals
can be considered as a variable or a programmer-defined area.

Each portal has an index or a subindex. An object dictionary portal can be accurately located by using the
index structure. The CANopen protocol stack provides standard APIs to define object dictionary portals,
including their read and write attributes. Object dictionaries can be accessed by using communication
objects through the CAN bus.

In object dictionaries, the attributes of each portal must be defined, including the data type, access
permission, data transmission for process data objects (PDOs), and variable range.

 ■ PDOs are used to transmit the real-time data of processes.

 ■ Service data objects (SDOs) are used to access the object dictionary of a device, set parameters, or
transmit non-real-time data.

 ■ SYNC messages do not contain data. They are sent by the producer to the CAN network periodically
to trigger transmission of PDO data on nodes.

 ■ Emergency messages are triggered by the internal critical errors of devices. They consist of a fault
code, fault register, and manufacturer specific error.

CiA DS-301 defines the application layer and communication protocols. CiA DSP-302 defines the
framework of programmable CANopen devices. CiA DSP-304 defines the framework of secure redundant
data transmission, whereas the data description of specific devices is defined in the application protocol
consisting of respective device protocols. For example, CiA DSP-401 defines the data format of the I/O
module, and CiA DSP-402 defines the data format for drive control.

3.7.1 General Process of Using CANopen

The general process of using CANopen is as follows:

1) Design the CANopen hardware network structure.

2) On the Network Configuration tab page, activate the CANopen bus. After the CANopen bus is
activated, the CANopen master is automatically added, and the CANopen bus task named CANopen is
also added. By default, the CANopen bus uses the task to refresh I/O.

3) On the Network Configuration tab page, add CANopen slaves and modules based on the hardware
structure. Before adding a third-party slave, import an EDS file to import the third-party slave on the
Network Configuration tab page.

file:///C:\Users\c3291\AppData\Roaming\x1273\Documents\My%20RTX%20Files\1273\ss
file:///C:\Users\c3291\AppData\Roaming\x1273\Documents\My%20RTX%20Files\1273\ss
file:///C:\Users\c3291\AppData\Roaming\x1273\Documents\My%20RTX%20Files\1273\ss

-160-

Chapter 3 Network Settings

4) To add an AM600 slave, you need to add an I/O module on the Hardware Configuration tab page.
Double-click the module in In\Output Module List on the right, as shown in the following figure. The
CANopen slave is a CANopen remote device.

5) Set the master parameters, slave parameters, and module parameters properly. In normal cases, the
slave node ID is automatically generated, PDOs and mapping are automatically generated based on
the EDS file, and some special settings need to be modified manually.

When setting the parameters of the master and slave, ensure that the master baud rate and slave
node ID match with the slave baud rate and slave node ID DIP switch, respectively.

Figure 3-54 Master parameter settings

file:///C:\Users\c3291\AppData\Roaming\x1273\Documents\My%20RTX%20Files\1273\ss

-161-

Chapter 3 Network Settings

Figure 3-55 Slave parameter settings

Figure 3-56  Module parameter settings

The software provides soft elements to obtain the CANopen slave status and the CiA-DSP405 library for
slave management and operation.

file:///C:\Users\c3291\AppData\Roaming\x1273\Documents\My%20RTX%20Files\1273\ss

-162-

Chapter 3 Network Settings

3.7.2 Configuring a CANopen Master

1 Master configuration

Figure 3-57 CANopen master configuration page
Network management

 ■ Node ID: unique identifier of the master in the CANopen network. The default value is 127, and the
value range is 1 to 127, in the decimal format.

 ■ Check and fix configuration: See "Check and fix configuration."

 ■ Stopped on failure: See "Stopped on failure."

 ■ Baudrate: baud rate of transmission along the bus. The unit is bit/s. The optional values are 10000,
20000, 50000, 100000, 125000, 250000, 500000, 800000, and 1000000. The default value is 1000000.

NOTE

If the CPU module is at the head end or tail end of the network, turn the build-out resistor of the
CANopen port to ON. Set a proper baud rate because the communication distance is related to the
baud rate.

 ■ No access to SDO, NMT When program is running: If it is selected, the slave cannot be accessed
through SDO and NMT in the user program or on the slave debugging page when the program is
running.

 ■ Network load: real-time load of the CANopen network when the bus is running. The network load is
displayed only after you log in to the PLC.

Sync

 ■ Enable Sync Producing: If it is selected, the master sends synchronization information. It is
deselected by default. This function can be enabled on only one station of the CANopen bus system.
The PDO indicating the synchronization type sends information based on the preset type after
synchronization information is sent.

 ■ COB-ID: indicates the communication object identifier, which is also the synchronization message
ID. It is invariably set to 16#80 and cannot be changed. This COB-ID is also used if Enable Sync
Producing is selected on the slave.

 ■ Cycle Period (μs): indicates the interval at which synchronization information is sent. The value
ranges from 2000 to 4,294,967,000, in microseconds. It is an integral multiple of the bus task time.

 ■ Window Length(μs): used for PDO synchronization. The unit is microseconds. It is invariably set to 0
and cannot be changed.

-163-

Chapter 3 Network Settings

Heartbeat

Heartbeat is a node guarding mechanism. Different from node daemon, heartbeat can be triggered by the
master or slave. In normal cases, the master sends heartbeat information to the slave, which is configured
with the master node ID for consumption so that the slave can monitor the master.

 ■ Enable Heartbeat Producing: If it is selected, the master sends heartbeat information. It is
deselected by default.

 ■ Node ID: unique identifier of the sent heartbeat information. By default, it is set to the master node
ID. The value ranges from 1 to 127.

 ■ Producer Time (ms): interval at which heartbeat information is sent. The value ranges from 2 to
32,767, in milliseconds. It is an integral multiple of the bus task time.

 ■ Window Length (μs): used for PDO synchronization. The unit is microseconds. It is invariably set to 0
and cannot be changed.

2 Check and fix configuration

When multiple slaves are added to the CANopen system, the master or slave node IDs may be repeated
or the COB-IDs may conflict with each other because the EDS files of different slaves may contain a
configured COB-ID by default or the slave node ID is modified. Click Check and fix configuration to solve
the problem of repeated node IDs or conflicting COB-IDs. You can enter the Check and fix configuration
page from the master configuration page.

Figure 3-58  Check and fix configuration page
Double Node ID

The Double Node ID area lists the slaves with the same node ID. You can edit the Node ID column to
re- allocate node IDs. Then, repeated node IDs are automatically canceled.

Wrong COB-ID

The Wrong COB-ID area lists the slaves with conflicting and invalid COB-IDs. You can modify COB-IDs in
one of the following three ways:

-164-

Chapter 3 Network Settings

 ■ Edit the Wrong COB-ID column to manually modify the COB-ID corresponding to the current slave
index.

 ■ Click the button in the Automatic suggestion column and modify the COB-ID corresponding to the
current slave index based on the displayed value.

 ■ Click Use suggestion for all and modify all the incorrect COB-IDs based on the displayed values.

After modification, slaves with correct COB-IDs disappear from the page.

3 Stop setting on failure

The Stop Setting on Failure function determines whether to stop slave operation when a slave or module
is faulty or the configuration is inconsistent. This function is only applicable to AM600 CANopen slaves.

Figure 3-59  Stop Setting on Failure page
 ■ Setting list on slaves failure: You can view and set whether to stop operation upon slave failure or

inconsistent configuration.

 ■ In the Stopped On Failure column, you can set whether to stop slave operation when the specified
slave or module is faulty. If the check box under Stopped On Failure is selected, the slave stops
running when it is faulty or when the I/O module with the diagnosis and report function enabled is
faulty.

 ■ In the Stopped on Inconsistent Configuration column, you can set whether to stop slave operation
when the I/O module of the slave has inconsistent configuration. If the check box is selected, the
slave stops running when the I/O type does not match or the number of modules is more or less than
the actual quantity.

 ■ Click Select All or Select None to activate or deactivate all the slave settings in Setting list on slaves
failure.

 ■ Click OK or Cancel to save or cancel the settings on the Stop Setting on Failure page.

-165-

Chapter 3 Network Settings

4 CANopen master I/O mapping

For the general description of I/O mapping and instructions on this dialog box, see "I/O mapping."

5 State

The state configuration editor for the CANopen bus devices or modules displays state information (such as
Running and Stopped) and the status of the internal bus system.

6 Information

The following basic information about the currently available device is displayed: name, vendor, type,
version, module number, and description.

3.7.3 Configuring a CANopen Slave

The main items of CANopen slave configuration include the basic parameters, PDO settings, SDO settings,
and debugging.

1 Slave parameter setting

Figure 3-60 Slave parameter setting
General

 ■ Node ID: unique identifier of a slave in the CANopen network. The value ranges from 1 to 127, in the
decimal format. The node ID must be consistent with the slave identifier (such as the DIP switch).

 ■ SDO Channels: not supported for the moment.

 ■ Enable Expert Settings: If it is selected, you can set expert parameters, such as slave node
protection, heartbeat generation, emergency packet, check restart, PDO mapping operation, system
SDO display, and SDO abnormal jump.

 ■ Optional Device: not supported for the moment.

file:///C:/Users/c3350/Desktop/%25e4%25b8%25ad%25e5%259e%258bPLC%25e7%25bc%2596%25e7%25a8%258b%25e8%25bd%25af%25e4%25bb%25b6%25e6%2589%258b%25e5%2586%258c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-166-

Chapter 3 Network Settings

 ■ Create all SDOs: Select it to create writable SDOs in the object dictionary. For example, the object
access attributes are RW, WO, RWR, and RWW. The created SDOs are displayed on the Service Data
Object page.

 ■ NO Initialisation: not supported for the moment.

 ■ Enable Sync Producing: If it is selected, the slave sends synchronization information. It is
deselected by default. This function can be enabled on only one station of the CANopen bus system.
Synchronous sending adopts the synchronization parameter settings of the master.

 ■ Factory Settings: If it is selected, the slave parameter settings are restored before you download
configuration or configure the slave. The type of parameter restoration depends on the option
selected from the restoration type list. The options are as follows:

1) sub:001: restores all the parameters.

2) sub:002: restores communication-related parameters (manufacturer-specified communication
parameters indexed from 1000h to 1FFFh).

3) sub:003: restores application-related parameters (manufacturer-specified application parameters
indexed from 6000h to 9FFFh).

4) sub:004 to sub:127: restores manufacturer-defined parameters.

5) sub:128 to sub254: reserved.

The options in the parameter restoration type list are based on the current object dictionary (EDS file) and
come from the parsing results of EDS file index 1011. The subindexes have one-to-one correspondence
with the preceding options.

Error Control

In the Error Control area, you can configure to monitor the node online status. The configuration items
include node guarding and heartbeat.

The node guarding function enables the master to monitor the online status of the slave. The master
sends slave daemon information periodically, and the slave is supposed to return a response to the
master. If the slave fails to respond within the node daemon time (equal to the guard time multiplied by
the life time factor), the master considers that the slave is lost.

Heartbeats can be produced by the master or slave. The producer broadcasts heartbeat packets to the
CAN bus, and the heartbeat consumer consumes the heartbeats. If a node is configured with heartbeat
consumption and no heartbeats corresponding to the node ID are detected within the configured time,
the node is considered lost. Generally, the slave consumes the heartbeats of the master to monitor the
online status of the master.

 ■ Enable Nodeguarding: Select this check box to enable the node guarding function. Node guarding
and heartbeat are mutually exclusive. The master sends a node guard matrix periodically within the
guard time. If the slave fails to return a response containing a specific COB-ID (communication object
identifier) within the node daemon time (which is equal to the guard time multiplied by the life time
factor), the slave is considered offline.

 ■ Guard Time: interval at which the master sends node guard frames periodically. The value is an
integral multiple of the bus task time and ranges from 10 to 65,535, in ms.

 ■ Life Time Factor: used with Guard Time. If the slave does not return a response within the node
daemon time (equal to the guard time multiplied by the life time factor), the master considers that
the slave is lost. The value ranges from 1 to 255.

 ■ Enable Heartbeat: Select this check box to enable the heartbeat function on the slave so that the
slave sends heartbeat frames periodically at an interval indicated by Producer Time. Heartbeat and
node guarding are mutually exclusive.

-167-

Chapter 3 Network Settings

 ■ Producer Time: interval at which the slave sends heartbeat frames. The value is an integral multiple
of the bus task time and ranges from 10 to 32,767, in ms.

 ■ Change Heartbeat Consumer Properties: Click this button to configure a heartbeat producer for
the slave. You can configure heartbeat consumption for a slave so that the slave monitors the online
status of the slave that produces heartbeats. Generally, the slave consumes the heartbeats of the
master.

Figure 3-61  Heartbeat Properties dialog box
You can configure a heartbeat producer after selecting the Enable check box.

By default, NodeID of guarded Node is set to the ID of the heartbeating node of the master. If the
heartbeat function is not enabled on the master, this parameter is set to 0. The value ranges from 1 to 127.
By default, Heartbeat Time is equal to the master heartbeating time multiplied by 1.5. The value ranges
from 1 to 65535.

Emergency

 ■ Enable Emergency: Select this check box so that the slave sends emergency messages through the
emergency COB-ID. The emergency messages can be obtained through the functions provided by the
CiA405 library (RECV_EMCY_DEF, RECV_EMCY) function library.

 ■ Emergency COB-ID: COB-ID for the slave to send emergency messages. The default value
is $NODEID+16#80, where NODEID is the node ID of the slave. The COB-ID is in the format
$NODEID+16#+hexadecimal number, 16#+hexadecimal number, or decimal number. (Example)

Checks At Startup

 ■ Check Vendor ID: Select this check box to enable vendor ID checking. The slave checks whether the
vendor ID (index: 1018; subindex: 01) in the object dictionary matches with the vendor ID of the slave.
The slave may not run properly if they do not match.

 ■ Check Product Number: Select this check box to enable product number checking. The slave checks
whether the product number (index: 1018; subindex: 02) in the object dictionary matches with the
product number of the slave. The slave may not run properly if they do not match.

 ■ Check Revision: Select this check box to enable version checking. The slave checks whether the
version (index: 1018; subindex: 03) in the object dictionary matches with the version of the slave. The
slave may not run properly if they do not match.

2 Receive PDO
PDO is used by real-time data transmission between master and slave. Receive PDO is the real-time data
that the master sends to the slave.

A PDO includes communication parameters and mapping parameters. The communication parameters
include the unique communication identifier COB-ID, transmission type, and transmission control. The
PDO mapping parameters indicate the indexes and subindexes in the object dictionary which the PDO
transmitted data come from.

-168-

Chapter 3 Network Settings

Receive PDO comes from the objects starting from index 1400 to index 1600 in the object dictionary. The
default communication parameter values of each PDO come from the corresponding subindexes. The
objects mapped to the receive PDO come from the writable objects in the object dictionary, such as the
RW, RWW, and WO access permissions.

NOTE

1) In non-expert mode, you can only change the values of the PDO communication parameters, but
cannot add or delete PDOs and PDO mappings.

2) AM600 slaves can only change the values of the PDO communication parameters, but cannot add
or delete PDOs and PDO mappings. PDO mappings increase as AM600 I/Os are added.

The receive PDO is mapped to the AM600 output module. Each module corresponds to an invariable
index, as shown in the following table.

Module Type Index (Hexadecimal) Subindex (Hexadecimal) Data Type

DO16 6300 01-10 Unsigned short int

DA4 6411 01-10 Short int

Figure 3-62  Receive PDO page
 ■ Click Add PDO to add a PDO. The new PDO appears at the end of the PDO list. The maximum number

of receive PDOs of the slave is determined by the number of indexes from 1400 to 1600 in the object
dictionary. No more PDOs can be added when the maximum number is exceeded. The added PDO
name and index are automatically obtained from the object dictionary in the usage sequence, and
they cannot be modified.

After you click Add PDO, a dialog box is displayed, where you can set PDO attributes. For details, see
"PDO attributes."

 ■ Click Add Mapping to add a PDO mapping to the selected PDO. The new PDO mapping appears
after the current PDO. A PDO mapping contains a maximum of 64 bits. If this limit is exceeded, the
PDO mapping cannot be added. PDO mappings come from the object dictionary. Receive PDOs
are mapped to the writable objects in the object dictionary, such as the RW, RWW, and WO access
permissions. For non-AM600 slaves, when you click Add Mapping to add a receive PDO mapping, the
Select Item From Object Dictionary dialog box is displayed. For details, see "Adding an object."

 ■ Click Edit to change the value of the selected PDO communication or mapping parameter. If a PDO
is selected, you can change the values of PDO communication parameters. If a PDO mapping is
selected, you can modify the PDO mapping. For AM600 slaves, you can only change the values of
communication parameters.

-169-

Chapter 3 Network Settings

 ■ Click Delete to delete the selected PDO or PDO mapping. If a PDO is selected, this PDO is deleted. If a
PDO mapping is selected, you can modify the PDO mapping. AM600 slaves do not support the delete
operation.

3 Send PDO

PDO is used by real-time data transmission between master and slave. Send PDO is the real-time data that
the slave sends to the master.

Send PDO comes from the objects starting from index 1800 to index 1A00 in the object dictionary. The
default communication parameter values of each PDO come from the corresponding subindexes. The
objects mapped to the send PDO come from the readable objects in the object dictionary, such as the RW,
RWR, RO, and CONST access permissions.

NOTE

1) In non-expert mode, you can only change the values of the PDO communication parameters, but
cannot add or delete PDOs and PDO mappings.

2) AM600 slaves can only change the values of the PDO communication parameters, but cannot add
or delete PDOs and PDO mappings. PDO mappings increase as AM600 I/Os are added.

The send PDO is mapped to the AM600 input module. Each module corresponds to an invariable index, as
shown in the following table.

Module Type Index (Hexadecimal) Subindex (Hexadecimal) Data Type

DI16 6100 01-10 unsigned short int

AD4 6401 01-10 short int

Figure 3-63 Send PDO page
 ■ Click Add PDO to add a PDO. The new PDO appears at the end of the PDO list. The maximum number

of send PDOs of the slave is determined by the number of indexes from 1800 to 1A00 in the object
dictionary. No more PDOs can be added when the maximum number is exceeded. The added PDO
name and index are automatically obtained from the object dictionary in the usage sequence, and
they cannot be modified.

After you click Add PDO, a dialog box is displayed, where you can set PDO attributes. For details, see
"PDO attributes."

 ■ Click Add Mapping to add a PDO mapping to the selected PDO. The new PDO mapping appears
after the current PDO. A PDO mapping contains a maximum of 64 bits. If this limit is exceeded, the
PDO mapping cannot be added. PDO mappings come from the object dictionary. Send PDOs are
mapped to the readable objects in the object dictionary, such as the RW, RWR, RO, and CONST access
permissions.

When you click Add Mapping to add a PDO mapping, the Select Item From Object Dictionary

-170-

Chapter 3 Network Settings

dialog box is displayed. For details, see "Adding an object."

 ■ Click Edit to change the value of the selected PDO communication or mapping parameter. If a PDO
is selected, you can change the values of PDO communication parameters. If a PDO mapping is
selected, you can modify the PDO mapping. For AM600 slaves, you can only change the values of
communication parameters.

 ■ Click Delete to delete the selected PDO or PDO mapping. If a PDO is selected, this PDO is deleted. If a
PDO mapping is selected, you can modify the PDO mapping. AM600 slaves do not support the delete
operation.

4 SDO

SDOs are used to transmit data during slave initialization and operation. The settings on the Service Data
Object page are written to the slave during slave initialization.

On the Service Data Object interface, you can configure the selected SDO, modify the SDO transmission
sequence, and define an error handling method to be applied during SDO transmission.

Figure 3-64  Service Data Object page
The SDO list displays all the SDOs written to the slave during slave initialization. The SDOs in gray are
automatically added and displayed on top of the list. They are configured preferentially and automatically
generated based on the parameter settings on the slave configuration page, such as heartbeat, node
daemon, emergency information, PDO, and PDO mapping. You can click Add to add user-defined SDOs.
User-defined SDOs can be modified and their positions in the list can be changed.

Double-click a value in the Value column to change the value of the corresponding SDO.

You can define an error handling method to be applied during SDO configuration. If the Abort if error
check box is selected, SDO configuration is aborted in the case of an error, and the following SDOs are not
configured. If the Jump to line if error check box is selected, the system jumps to the specified line and
you can configure the following SDOs. If Abort if error and Jump to line if error are not selected, the
default error handling method applies, where the next SDO is configured.

NOTE

1) SDOs and the error handling method are displayed only in expert mode.
2) Be cautious when selecting Jump to line if error. SDO configuration may encounter infinite loop

if the system jumps to a previous line.

 ■ Click Move Up to move a user-defined SDO to the previous line.

 ■ Click Move Down to move a user-defined SDO to the next line.

 ■ Click Add to add an SDO before the selected SDO. When you click Add, the Select Item From Object

-171-

Chapter 3 Network Settings

Dictionary dialog box is displayed. In the Select Item From Object Dictionary dialog box, you can
modify the SDO value and comment.

 ■ Click Edit to modify the selected SDO. In the displayed Select Item From Object Dictionary dialog
box, modify the SDO information. Only user-defined SDOs can be modified.

 ■ Click Delete to delete the selected SDO. Only user-defined SDOs can be deleted.

 ■ SDO Timeout: Set the timeout period of an SDO. The value ranges from 0 to 4,294,967, in ms. The
default value is 1000 ms.

5 Debugging

The Debug page provides the functions of slave NMT control, SDO read and write, and diagnosis
information acquisition.

Figure 3-65  Debug page
NMT

NMT provides network management services, such as initialization, node start/stop, and failed node
detection. The network management services adopt the master-slave communication mode, in which
only one NMT master node or station exists.

Figure 3-66 shows the state transition of a slave during startup.

Figure 3-66  State transition of a slave during startup

-172-

Chapter 3 Network Settings

Note:

a. NMT; b. Node Guard; c. SDO; d. Emergency; e. PDO; f. Boot-up

State transition (1 to 5 are initiated by NMT) sequence, NMT command words (enclosed by brackets):

1: Start_Remote_node (0x01, Start Node)

2: Stop_Remote_Node (0x02, Stop Node)

3: Enter_Pre-Operational_State (0x80, Enter Preoperational State)

4: Reset_Node (0x81, Reset Node)

5: Reset_Communication (0x82, Reset Communication)

6. The device completes initialization, enters the Pre_Operational state, and sends a Boot-up message.

Initialization includes application data initialization and communication initialization. During node reset,
all the data of slave nodes is reset. During communication reset, only communication data is reset.

NMT can enable all or some nodes to enter different working statuses at any time.

 ■ Start Node: Click this button to run slave nodes. PDO communication can be implemented only
when slave nodes are running. When the slave is in the preoperational or stopped state, Start Node
sets the slave to the running state (state 1 in Figure 3-66).

 ■ Stop Node: Click this button to stop slave nodes from running, and all communication except node
daemon and heartbeat stops. When the slave is in the preoperational or running state, Stop Node
sets the slave to the stopped state (state 2 in Figure 3-66).

 ■ Enter Preoperational State: Click this button to enable the slave to enter the preoperational state,
in which the slave can initiate SDO communication, but not PDO communication. The slave enters
the preoperational state after initialization. When the slave is in the running or stopped state, Enter
Preoperational State sets the slave to the preoperational state (state 3 in Figure 3-66).

 ■ Reset Node: Click this button to reset the configuration of the slave. The application configuration
and communication configuration are reset in sequence. The slave enters the preoperational state
(state 4 in Figure 3-66).

 ■ Reset Communication: Click this button to reset the communication configuration of the slave.
Only the communication configuration is reset. The slave enters the preoperational state (state 5 in
Figure 3-66).

SDO

SDO is used to transmit a large volume of low-priority data between devices. A typical usage of SDO is
to configure devices in a CANopen network. On this page, you can read or write SDO object values when
slave nodes are running. When reading or writing an SDO object, you need to determine the index,
subindex, and bit length of the SDO object. Also, specify the value to be written.

 ■ Index: SDO read/write index, ranging from 16#0 to 16#FFFF.

 ■ Subindex: SDO read/write index, ranging from 16#0 to 16#FF.

 ■ Bitlength: SDO read/write bit length. The optional values are 8, 16, 24, and 32.

 ■ Data: SDO value read or written. Enter a hexadecimal value in the first text box, and enter a decimal
value after the equal sign (=). The range of the written SDO value is related to the bit length. The
minimum value is 0, and the maximum value is indicated by the bit length.

 ■ Result: SDO read/write result. An error message is displayed when read/write is abnormal.

-173-

Chapter 3 Network Settings

Diagnosis

The Device Diagnosis page displays the running status and emergency information about slave nodes.

 ■ Online Status: indicates whether the slave is online. If the slave is online, a green icon with the text
"Online" is displayed. If the slave is offline, a red icon with the text "Offline" is displayed.

 ■ Run Status: indicates the running status of the slave with an icon, followed by descriptive text. See
the following figure.

State Icon Descriptive Text

Running The slave is running.

Stopped The slave is stopped.

Preoperational The slave is in the preoperational state.

Initialized The slave has been initialized.

Not connected The slave is disconnected.

Connecting The slave is being connected.

Preparing The slave is in the preparation state.

Reset node A node is being reset.

Reset communication Communication is being reset.

Scan node The slave is being scanned.

Configure node The slave is being configured.

Start node The slave is being started.

Unknown state The status of the slave is unknown.

 ■ Diag String: displays the current diagnosis information of the slave.

 ■ The Latest Emergency Information: displays the first unconfirmed emergency message. Incoming
emergency messages are not displayed until the current emergency message is confirmed.

An emergency message contains 8 bytes and is in the following format:

sender receiver(s) COB-ID Byte 0-1 Byte 2 Byte 3-7

0x080+Node_ID Fault code
Fault register

(Object 0x1001)
Manufacturer specific code

The following table lists hexadecimal fault codes. The xx part is defined by the corresponding device
subprotocol.

Fault Code (Hexadecimal) Function

00xx Error Reset or No Error

10xx Generic Error

20xx Current

21xx Current, device input side

22xx Current, inside the device

23xx Current, device output side

30xx Voltage

31xx Mains voltage

32xx Voltage inside the device

-174-

Chapter 3 Network Settings

Fault Code (Hexadecimal) Function

33xx Output voltage

40xx Temperature

41xx Ambient temperature

42xx Device temperature

50xx Device hardware

60xx Device software

61xx Internal software

62xx User software

63xx Data set

70xx Additional modules

80xx Monitoring

81xx communication

8110 CAN overrun

8120 Error Passive

8130
Life Guard Error

Or Heartbeat Error

8140 Recovered from Bus-Off

82xx Protocol Error

8210
PDO no processed

Due to length error

8220 Length exceeded

90xx External error

F0xx Additional functions

FFxx Device specific

The emergency information includes the time, fault code, fault register, and manufacturer specific code.

 ■ Time: time when the emergency information is obtained, rather than the time when a fault occurs.

 ■ Fault code: Place the cursor over a fault code to view the emergency information.

 ■ Fault register: register that stores emergency information. See the following table.

Fault Register Definition (Bit) Fault Type

0 Generic

1 Current

2 Voltage

3 Temperature

4 Communication

5 Device profile specific

6 Reserved (=0)

7 Manufacturer

 ■ Manufacturer specific code: code of the emergency information manufacturer.

 ■ Confirm: Click this button to confirm the emergency information. Only one emergency message is
retained. Incoming emergency messages are not displayed until the current emergency message is
confirmed.

-175-

Chapter 3 Network Settings

6 PDO attributes

PDO attributes are used to set PDO communication parameters, including COB-ID (communication object
identifier), Transmission Type, Inhibit Time, and Event Time. The Send PDO Properties dialog box is
displayed when you modify or add a PDO.

Figure 3-67  Send PDO Properties dialog box
 ■ COB-ID: communication object identifier of the PDO. Each COB-ID is unique within the CANopen

bus and cannot be the same as other PDO COB-IDs, emergency COB-IDs, and heartbeat COB-IDs.
The value range of PDO COB-ID is 16#180-57F, 681-6DF. If it is invalid, you can modify it manually or
by using the check and fix configuration function on the master. The default COB-ID of each PDO
comes from the object of subindex 01 of the corresponding PDO in the object dictionary. If the object
dictionary format is $NodeID+value, the COB-ID changes with the slave node ID. After the COB-ID is
changed manually, the original emergency code does not change with the new ID. The COB-ID cannot
be changed if the object dictionary corresponding to the COB-ID does not have the write permission.

 ■ RTR: whether to enable remote frame reception. PDO sending is triggered when remote frames are
received. Only sent PDOs are displayed.

 ■ Transmission Type: transmission mode to be applied during PDO communication.

PDO supports the following transmission modes:

1) Synchronous (synchronization is implemented by receiving SYNC objects)

Aperiodic: Sending is triggered by remote frames or object-specific events specified in the device
subprotocol.

Periodic: Sending is triggered after 1 to 240 SYNC messages.

2) Asynchronous

Sending is triggered by remote frames or object-specific events specified in the device subprotocol.

The following table lists the different PDO transmission modes defined by transmission types, which are
part of the PDO communication parameter objects and defined by an eight-digit unsigned integer.

Transmission
Type

PDO Communication Trigger Condition

(B = both needed; O = one or both) PDO Transmission

SYNC RTR Event

0 B - B Synchronous and non-cyclic

1-240 O - - Synchronous and cyclic

241-251 - - - Reserved

252 B B - Synchronous, after RTR

253 - O - Asynchronous, after RTR

-176-

Chapter 3 Network Settings

Transmission
Type

PDO Communication Trigger Condition

(B = both needed; O = one or both) PDO Transmission

SYNC RTR Event

254 - O O
Asynchronous, manufacturer specific
event

255 - O O
Asynchronous, specific event defined
in the device subprotocol

Note:

SYNC: SYNC-object received.

RTR: remote frame received.

Event: Value changed or timer interrupted.

Transmission type: A value ranging from 1 to 240 indicates the number of SYNC objects between two PDOs.

The default transmission type of each PDO comes from the object of subindex 02 of the corresponding
PDO in the object dictionary. If the object dictionary does not have the write permission, the transmission
type cannot be changed.

 ■ Number Of Syncs: This parameter is related to Transmission Type and can be modified only
when the value of Transmission Type is within the range from 1 to 240. The slave starts processing
transmitted PDO data after receiving the number of synchronization frames specified by this
parameter.

 ■ Inhibit Time: The value of this parameter can be changed only when the value is equal to the
product of the minimum interval at which the same PDO transmits two data records and 100 μs.
This parameter prevents frequent PDO sending when a value is changed. The value ranges from 0 to
65535. The default value is 0. This parameter can be set only when PDOs are sent and Transmission
Type is set to 254 or 255. The default value of Inhibit Time of each PDO comes from the object of
subindex 03 of the corresponding PDO in the object dictionary. The value of Inhibit Time cannot be
changed if the object dictionary corresponding to Inhibit Time does not have the write permission.

 ■ Event Time: interval at which the same PDO transmits two data records. The value ranges from
0 to 65535, in ms. The default value is 0. This parameter can be set only when PDOs are sent and
Transmission Type is set to 254 or 255. The default value of Event Time of each PDO comes from
the object of subindex 05 of the corresponding PDO in the object dictionary. The value of Event Time
cannot be changed if the object dictionary corresponding to Event Time does not have the write
permission.

7 Adding an object

In the Select Item From Object Dictionary dialog box, you can add and modify receive PDO mappings,
send SDO mappings, or SDOs. During SDO operation, this dialog box adds the SDO Value text box and the
SDO Comment text box.

-177-

Chapter 3 Network Settings

Figure 3-68 Select Item From Object Dictionary dialog box
Object list: lists the objects in the EDS file. When receive PDO mappings are modified, only the objects
with the RW, RWW, or WO access permission and with an index greater than 16#2000 are displayed. When
send PDO mappings are modified, only the objects with the RW, RWR, RO, or CONST access permission
and with an index greater than 16#2000 are displayed. When SDOs are modified, only the objects with the
RW, RWW, RWR, or WO access permission are displayed.

NOTE

When the SDOs of AM600 slaves are modified, the objects with an index within the range from
16#2000 to 16#40df cannot be displayed. These parameters are used by module configuration and set
in the module.

 ■ Index: index of an object, ranging from 16#0 to 16#FFFF. After an object in the object list is selected,
its index is displayed.

 ■ Subindex: subindex of an object, ranging from 16#0 to 16#FF. After an object in the object list is
selected, its subindex is displayed.

 ■ Bitlength: bit length of an object, ranging from 0 to 32. After an object in the object list is selected, its
bit length is displayed.

 ■ Value: SDO value. It is displayed only when SDOs are modified. Its value range is related to the data
type of the selected object. After an object in the object list is selected, its value is displayed.

 ■ Comment: SDO comment. It is displayed only when SDOs are modified. The value contains a
maximum of 50 characters.

8 CANopen slave I/O mapping

This page is displayed only when the slave is not of the AM600 series. The I/O mappings of AM600 slaves
correspond to the AM600 I/O modules and are not displayed here. For the general description of I/O
mapping and instructions on this page, see "I/O mapping."

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-178-

Chapter 3 Network Settings

9 State

The state configuration editor for the CANopen bus or modules displays state information (such as
Running and Stopped) and the status of the internal bus system.

10 Information

The following basic information about the currently available device is displayed: name, vendor, type,
version, module number, description, and image.

3.7.4 CANopen Module

1 Modular device and non-modular device

In CANopen slave configuration, you can connect CANopen slave nodes to the following two types of
modular devices:

Modular device: It is connected to a CANopen slave node and provides an I/O mapping list. The CANopen
Slave I/O Mapping dialog box is not required. The PDO mappings of slave nodes increase as modules are
added. Currently, the AM600 I/O module is a type of modular device.

Non-modular device: The slave node dialog box includes the I/O mapping dialog box. PDO mappings
cannot be configured automatically.

2 AM600 CANopen I/O module

The AM600 CANopen I/O module is added in hardware configuration. A PDO mapping is automatically
added when an I/O is added. For details about the relationship with PDO mappings, see "Receive PDO
and Send PDO." After an I/O is added, you can set I/O parameters and add mappings to refresh data. For
details, see "CPU-specific I/O module."

3.7.5 Programming Interface

CiA-405 library. For details, see section "6.3.1 CiA405".

3.8 CANlink 3.0 Configuration Editor

The CANlink protocol is a real-time CAN bus application-layer protocol developed by Inovance based on
the CAN 2.0 bus protocol. CANlink is mainly used for high-speed and real-time data exchange between
Inovance products, such as PLCs, AC drives, servo controllers, and remote extension modules. Read this
section carefully before using the CANlink function of the PLC of the AM600 series.

CANlink 3.0 adopts the master/slave mode. A network must have a single master and may have 1 to 62
slaves. The master and slave numbers range from 1 to 63, and each number must be unique.

1) Master/Slave running status monitoring through heartbeat

2) Bus usage warning and real-time bus usage monitoring

3) Reconnection upon disconnection

4) Hot access

5) 256 configuration records (including time trigger, event trigger, and synchronization trigger) sent by
the master

mk:%40MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/home.htm
mk:%40MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/CANopen_I_O_Mapping.htm
mk:%40MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/CANopen_I_O_Mapping.htm
mk:@MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/CANopen_I_O_Mapping.htm
file:///C:\Users\c3291\AppData\Roaming\x1273\Documents\My%20RTX%20Files\1273\sss
file:///C:\Users\c3291\AppData\Roaming\x1273\Documents\My%20RTX%20Files\1273\hhh

-179-

Chapter 3 Network Settings

6) 16 configuration records (including time trigger, event trigger, and synchronization trigger) sent by a
single slave, amounting to 256 configuration records sent by all slaves

7) Point-to-multipoint data received by each station from other eight stations

8) Master-slave data exchange and slave-slave data exchange

9) Up to 128 data records written synchronously to the master

3.8.1 CANlink 3.0 Network Structure

1 Communication distance

A CANlink 3.0 network consists of 1 master and 1 to 62 slaves. The specific number of slaves is related to
the baud rate.

Baud Rate Maximum Communication Distance Communication Cable Diameter Number of Connected Stations

1000 kbit/s 20 m ≥ 0.3 mm2 18

500 kbit/s 80 m ≥ 0.3 mm2 32

250 kbit/s 150 m ≥ 0.3 mm2 63

125 kbit/s 300 m ≥ 0.5 mm2 63

100 kbit/s 500 m ≥ 0.5 mm2 63

50 kbit/s 1000 m ≥ 0.7 mm2 63

The preceding data is obtained under the premise of using standard shielded twisted pairs. The maximum
number of connected stations (master and slaves) is determined based on the current baud rate.

2 Supported CANlink 3.0 devices

A CANlink 3.0 network must have a single master, which is a PLC of the AM400, AM600, or AC800 series.
The network may have 1 to 62 slaves, including AM400, AM600, or AC800 (300 of D8280 indicates support),
remote extension modules (51210 or versions later than 52210), 214 non-standard IS500 servos (H00-
02=214.xx), IS620P (H01-00=6.0 or greater), IS700 (H01-00=301.05), MD310 (F7-11=u37.18 or greater), and
MD380 (F7-11=4.71.06 or greater). Some products must be configured with a CANlink communication
extension card to use the CANlink function. For details, see the user manual of the specific product.

3 Special elements of CANlink 3.0 supported by AM600

NOTE

The CANlink function of AM600 uses the SD and SM soft elements, which are similar to the D and M
elements of small-sized PLCs. However, they do not have a mapping relationship.

SD Range Function SM Range Function

0 to 7000
User-specific word soft element
area (available range in the
CANlink configuration table)

0 to 3071
User-specific bit soft element
area (available range in the
CANlink configuration table)

7000 to 7999
User-specific word soft element
area

3072 to 7999
User-specific bit soft element
area

8000 to 8999
System-defined special register
element area

8000 to 8999

System-defined special bit
element area,

which is currently only used by
CANlink

-180-

Chapter 3 Network Settings

SD Range Function SM Range Function

9000 to 9999

System-defined special register
element area

which is currently only used by
high-speed I/O

9000 to 9999

System-defined special register
element area

which is currently only used by
high-speed I/O

The following table lists the special soft elements involved in the AM600 CANlink function (for details, see
the CANlink 3.0 standard).

Special Soft Element Attribute

SD8100 to SD8163

SD8100 indicates the current status of the local node. SD81xx
indicates the current status of the node with the station number xx.
For example, SD8101 indicates the current status of the node with
station number 1. Meanings of register values:

0: unconfigured; 1: configured; 2: online; 5: offline

SD8164 to SD8239 Reserved

SD8240 Bus loading capacity (monitoring in the programming software)

SD8241 CAN 3.0 slave status

SD8242 CAN 3.0 slave status

SD8243 CAN 3.0 slave status

SD8244 CAN 3.0 slave status

SD8245 Number of received frames

SD8246 Receive error count

SD8247 Send error count

SD8287 Manufacturer code

SD8288 Product series

SD8289 Product model

SD8290 Firmware version

SD8307 CAN 3.0 error (command error code)

SD8308 CAN 3.0 error (configuration error code)

3.8.2 General CANlink Use Process

The general process of using CANlink is as follows:

1) Design the CANlink hardware network structure.

2) On the Network Configuration tab page, activate the CANlink bus. The AM600 CPU can function
as the CANlink master or a CANlink local slave. Bus devices are automatically added after the bus is
activated.

3) If the AM600 CPU functions as the CANlink master, in the CANlink network configuration wizard, you
can set the master parameters and add or delete slaves. Slaves refer to remote slaves. If the AM600
CPU functions as a CANlink local slave, you can set other parameters.

4) Set the send parameters, receive parameters, and synchronization parameters properly.

5) Control CANlink transmitted data through soft elements in programs.

6) Control master and slave start/stop and monitor the master/slave running status on the Network
Management page.

file:///C:\Users\c3291\AppData\Roaming\Microsoft\Word\ss

-181-

Chapter 3 Network Settings

3.8.3 CANlink Network Configuration

Activate the CANlink bus in network configuration before configuring a CANlink network. After the CANlink
master is activated, the CANlink master node is added to the device tree. When configuring the first
CANlink network, double-click the node to display the network configuration wizard. After a CANlink slave
is activated, the CANlink slave node is added to the device tree. Double-click the node to display the local
slave configuration page.

1 CANlink 3.0 network configuration wizard

The network configuration wizard is displayed when you configure the CANlink bus for the first time or
click Site Management on the Network Management page. Set the master and slave parameters in the
network configuration wizard.

2 Master configuration

Figure 3-69 Master parameter settings
 ■ Master Site No.: identifies a station as the master in the network. The master manages and

monitors the entire CANlink 3.0 network. Master Site No. must be consistent with the number of the
configured PLC.

Network information

 ■ Baudrate: Select a baud rate to be used by the network. The baud rate of each station must be
consistent with the selected one. If no baud rate is selected here, the baud rates of the connected
stations must be consistent.

 ■ Network Heartbeat: The value ranges from 10 to 20,000, in ms. The master and slaves send
heartbeats to the network periodically to monitor each other. When a communication error occurs,
the master or slave triggers an alarm and handles the error. When Network Heartbeat is set to a
smaller value, monitoring is more sensitive and the network usage of heartbeats is higher. An alarm is
automatically triggered when the network usage of heartbeats exceeds 10%.

file:///C:\Users\c3291\AppData\Roaming\Microsoft\Word\ss

-182-

Chapter 3 Network Settings

NOTE

If you deselect this parameter, the heartbeat function is disabled and the system cannot monitor the
network.

Network management

 ■ Network Start/Stop Element(SM): Control the CANlink network to start and stop by using the SM8290
soft element. When SM8290 is set to TRUE, the CANlink network starts; otherwise, the CANlink
network stops.

 ■ Syn Send Trigger Element (SM): Control the synchronous write function for the configuration sent by
all stations by using the SM8291 soft element. For details, see "Configuring synchronous trigger."

Synchronous write trigger element

The synchronous write trigger element is used by the master to synchronize configuration. Up to eight
synchronous write trigger elements can be configured. You can leave this parameter unspecified when the
master does not need to synchronize configuration. For details, see "Synchronous write by the master."

3 Adding and deleting a slave

This page allows you to add, modify, and delete CANlink slaves.

Figure 3-70  Page for adding and deleting a slave
Site information

 ■ Slave Site Type: supported type of the slave station, which can be the PLC, servo, AC drive,
temperature control module, and non-temperature control module.

 ■ Slave Site No.: identifies a slave in the network. It must be different from the number of the master
or any other slave.

 ■ Status Code Register: SD element that indicates the running status of the corresponding slave. These
elements cannot be the same as other slave status register elements. The status may be Running or
Faulty (excluding offline).

-183-

Chapter 3 Network Settings

 ■ Start/Stop Element: SM element used by the master to start and stop slaves. These SM elements can
be used to start and stop slave communication during network runtime. These elements cannot be
the same as other slave start/stop elements and synchronous write trigger elements.

 ■ Slave information: comment about a slave, containing up to 32 characters.

 ■ Add: Click this button to add the slave with the configured information to the slave list. The system
checks whether Status Code Register and Start/Stop Element are unique.

 ■ Delete: Click this button to delete the selected slave from the slave list.

 ■ Modify: Click this button to modify the settings of the selected slave. The system checks whether
Status Code Register and Start/Stop Element are unique.

After the slave settings are complete, click OK to enter the Network Management page.

3.8.4 Network Management

On the Network Management tab page, you can start and stop the network, trigger synchronous
sending, start and stop monitoring, start and stop slaves, enter the station configuration wizard, modify
the network information of stations, and clear all the configuration.

Figure 3-71  Network Management page
Network information

 ■ Baudrate: Select a baud rate to be used by the network. The baud rate of each station must be
consistent with the selected one. If no baud rate is selected here, the baud rates of the connected
stations must be consistent.

 ■ Network Heartbeat: The value ranges from 10 to 20,000, in ms. The master and slaves send
heartbeats to the network periodically to monitor each other. When a communication error occurs,
the master or slave triggers an alarm and handles the error. When Network Heartbeat is set to a
smaller value, monitoring is more sensitive and the network usage of heartbeats is higher. An alarm is
automatically triggered when the network usage of heartbeats exceeds 10%.

NOTE

If you deselect this parameter, the heartbeat function is disabled and the system cannot monitor the
network.

 ■ Cycle Period: used to estimate the loading capacity of CANlink.

 ■ Network Load: CANlink network load, including CANlink receiving and sending, all heartbeat loads,
real-time load of the CANlink bus obtained during monitoring (SD8240 register value), and estimated
network load under non-monitoring conditions.

 ■ Background color of Network Load:

-184-

Chapter 3 Network Settings

Color Range (%) Load Description

Green 0 to 50 Load percentage, such as 10%

Yellow 51 to 75 Load percentage, such as 55%

Red 76 to 90 Load percentage, such as 78%

Red Greater than 90 ERR

 ■ Heartbeat Load: heartbeat load of CANlink, which is calculated through estimation. An estimated
value is obtained after login.

 ■ Background color of Heartbeat Load:

Color Range (%) Load Description

Green 0 to 10 Load percentage, such as 10%

Red Greater than 10 ERR

Network management

The network management function is available only after login to the PLC.

 ■ Start Network: Click this button to start and stop the CANlink network by using the SM8290 element.

 ■ Start Monitor: Click this button to start CANlink network monitoring and obtain the CANlink master/
slave running status periodically. The online status of stations is updated in the station list.

 ■ Sync Send Trigger: Click this button to trigger a synchronous write operation.

Station configuration

 ■ Device Type: Select the device type to be displayed in the station list.

 ■ Slave Start/Stop: Set the slave to the running state by setting the slave start/stop element to TRUE.

 ■ Site Management: Click this button to display the network configuration wizard dialog box, where
you can configure a CANlink network.

 ■ Clear Settings: Click this button to clear all the CANlink configuration and restore the master
configuration to the default.

 ■ Station list: displays the information and status of CANlink stations. The following columns are
displayed: Site, Device Type, Online Status, Status Register, Status Code, Start/Stop Element,
and Slave Information. Double-click a slave in the list to display the the page for send configuration,
receive configuration, or synchronous master write.

 ■ Site: unique identifier of a station.

 ■ Device Type: device type of the station, which can be the PLC, servo, AC drive, temperature control
module, and non-temperature control module.

 ■ Online Status: Click Start Monitor after login to the PLC to display the slave status. The online status
of a slave is obtained through the SD8240, SD8241, SD8242, and SD8243 online status registers. If the
slave is online, the system determines whether the slave is running or stopped by obtaining the value
of the slave start/stop element. The online status register is read-only and cannot be modified. The
following table lists the mapping relationships between each bit of the online status register and the
station number.

Soft Element Bit Slave Number

SD8243 Bit 15 to bit 0 32-47

SD8242 Bit 15 to bit 0 48 to 63

SD8241 Bit 14 to bit 0 1 to 16

SD8240 Bit 15 to bit 0 17 to 31

-185-

Chapter 3 Network Settings

 ■ Status Register: register that stores the slave running status. The running status register is read-only
and cannot be modified.

The following table lists each bit of the running status register.

Bit Description

Bit 0 Indicates the fault status. 1 indicates that the node is faulty, and 0 indicates that the node is normal.

Bit 1
Indicates the running status. 1 indicates that the node is running, and 0 indicates that the node is
stopped.

Bit 2
Indicates whether the device is ready. 1 indicates that the device is ready, and 0 indicates that the device
is not ready. This bit is only applicable to servos.

... Reserved

Bit 15 Reserved

 ■ Status Code: value of the slave status register, which indicates the status code defined by the slave.

 ■ Start/Stop Element: Start or stop the element.

 ■ Slave Information: comment about the slave.

3.8.5 Send Configuration

CANlink send configuration is divided into time trigger configuration, event trigger configuration, and
synchronous trigger configuration. Event trigger configuration is divided into PLC event trigger and non-
PLC event trigger.

1 Time trigger configuration

Time trigger configuration is a common configuration. The send station writes the source address to the
target address of the target station based on the configured time cycle. That is, the target station reads the
source address of the send station cyclically and saves the source address to the target address.

If the send station and receive station are the same, it is a point-to-multipoint configuration. All the
stations configured to receive point-to-multipoint data from this station can receive such data. For details,
see "Receive configuration."

Figure 3-72 Time trigger configuration page

-186-

Chapter 3 Network Settings

Station 1 writes the values of the neighboring registers SD102 and SD103 to H0200 and H0201 of station 3
every 100 ms.

In the fourth line of Figure 3-73, the send station and receive station are both station 1, so the
configuration is a point-to-multipoint configuration. Station 1 sends the data of SD110 to the network in
point-to-multipoint mode every 100 ms. All the stations configured to receive point-to-multipoint data
from station 1 can receive the frame.

The time ranges from 1 to 30,000, in ms. The shorter the time, the higher the data update speed is.

2 Event trigger configuration

Event trigger is a real-time trigger configuration. Sending is triggered immediately when conditions are
met. If conditions are not met, sending is not triggered, regardless of the interval from the last sending.

The event trigger of PLCs is slightly different from that of other products based on product features.

PLC event trigger configuration

The corresponding event is triggered when SM used as the trigger condition is set to ON. The event trigger
range is SM0 to 3071. A prompt is displayed when the range is exceeded.

Figure 3-73 PLC event trigger configuration
As shown in Figure 3-74, when SM100 is set to 1, station 1 sends the value of SD100 to SD100 of the PLC of
station 2. Then, SM100 is automatically reset.

Non-PLC event trigger configuration

Except PLCs, the event trigger of AC drives, servos, and extension modules is based on register value
change and the minimum interval from the last sending.

Figure 3-74  Non-PLC event trigger configuration
As shown in Figure 3-75, when H3000 of the AC drive of station 4 is changed, sending is triggered
immediately if the interval from the last sending of the configuration reaches 100 ms. If the interval from
the last sending is less than 100 ms, sending is not triggered until the specified time is reached. A shorter
interval results in better real-time effect but has greater impact on the network.

The minimum interval ranges from 1 to 30,000, in ms. A prompt is displayed when the range is exceeded.

-187-

Chapter 3 Network Settings

3 Synchronous trigger configuration

When the master configured with synchronous trigger detects that the synchronous sending trigger
element SM8291 is reset, the master broadcasts commands to the network to require all the stations in
the network to trigger synchronous sending in sequence. The trigger condition is configured by SM8291.
The master resets SM8291 after sending a command frame. As shown in Figure 3-76, master 1, PLC slave
2, and MD380 slave 4 are configured with synchronous trigger. If SM8291 of the master is reset, the three
stations send synchronous trigger data.

Figure 3-75  Synchronous trigger configuration
SM8291 is used in the same way as the SM element of PLC event trigger. You can perform the
corresponding operation by clicking Sync Send Trigger on the CANlink 3.0 main interface.

Only SM8291 of the master can operate SM8291 of the slave PLC without impact.

In essence, synchronous trigger is a type of event trigger in which SM8291 of the master is used as an
event by all the stations in the network.

4 Differences among time trigger, event trigger, and synchronous trigger

Item Time Trigger Event Trigger Synchronous Trigger

Sending mode
Scheduled and cyclic
sending.

Sending is triggered in the case
of an event or data change. The
event is automatically cleared after
sending.

Sending is enabled by the master.
The event is automatically
cleared after sending.

Real-time
effect

The real-time effect is
related to the configured
time. The shorter the
time, the better the real-
time effect is.

Sending is triggered in the case of
an event, with good real-time effect.

Sending is triggered when M8291
of the master is reset. The real-
time effect is better than that of
event trigger.

Execution
times

Scheduled sending.
Triggered once in the case of an
event.

Triggered once in the case of an
event.

Programming
in PLC

Scheduled sending,
without program design.

Sequential logic design in program.
Sequential logic design in
program.

Network
usage

High. Low. Low.

-188-

Chapter 3 Network Settings

Item Time Trigger Event Trigger Synchronous Trigger

Application
scenario

There are no special time
sequence requirements.
Data can be written
continuously.

There are time sequence
requirements. Data is written once,
or continuous writing may cause a
fault.

The master requires data
returned by multiple slaves in
special scenarios.

5 Send configuration editor

Figure 3-76 Send configuration editor
On the Send Configuration interface, you can configure sending for a station. The send list is divided into
two parts. The first part displays the configuration that the local station sends to other stations, whereas
the second part displays the configuration that other stations send to the local station.

For the master, up to 256 data records can be configured for sending; for slaves, up to 16 data records can
be configured for sending.

The send list contains the following columns: Trigger Way, Trigger, Send Site, Send Register, Receive
Site, Receive Register, and Reg Count.

 ■ Trigger Way: trigger type of data sending by stations. The options are time trigger, event trigger, and
synchronous trigger.

 ■ Trigger: trigger condition of data sending by stations. Configuration is sent when the trigger
condition is met. When the trigger type is time trigger and the range is 0 to 30,000, the station sends
configuration periodically based on the trigger value. When the trigger type is event trigger and the
trigger condition is TRUE, the station sends configuration if it belongs to the host or PLC type, the
trigger is an SM soft element, and the range is 0 to 3071. The station sends configuration periodically
if it is a servo, AC drive, temperature control module, or non-temperature control module, and the
range is 0 to 30,000. Sending is executed when the trigger mode is synchronous trigger and soft
element SM8291 is set to TRUE.

 ■ Send Site: station that sends configuration. It cannot be changed.

 ■ Send Register: register corresponding to the send station. If the send station belongs to the PLC type,
the range is 0 to 7000 (which indicates the register value plus the number of registers). If the send
station is a temperature control module, the range is 0 to 499 or 700 to 722. If the send station is a
non-temperature control module, the range is 0 to 63 or 700 to 722. If the send station is a servo or AC
drive, the range is 0 to 65,535.

-189-

Chapter 3 Network Settings

 ■ Receive Site: station that receives configuration. It must be an existing station.

 ■ Receive Register: register of the station that receives configuration. For point-to-multipoint
communication (the send station and receive station are the same), the range is 0 to 65,535. If the
receive station belongs to the PLC type, the range is 0 to 7000. If the receive station is a temperature
control module, the range is 0 to 499 or 721 to 722. If the receive station is a non-temperature control
module, the range is 0 to 63 or 721 to 722. If the receive station is a servo or AC drive, the range is 0 or
65,535.

 ■ Reg Count: number of send or receive registers. The value range is 1 to 4. The total length of Reg
Count and Send Register or Receive Register cannot exceed the specified limit.

3.8.6 Receive Configuration

On the Receive Configuration interface, you can configure stations to receive point-to-multipoint data
from the network.

Figure 3-77  Receive Configuration page
As shown in Figure 3-78, the receive configuration of slave 2 contains stations 1 and 3, indicating that slave
2 only receives point-to-multipoint data frames from stations 1 and 3. If the destination register address
of the received point-to-multipoint data meets the definition of station 2, the received data takes effect;
otherwise, the received data is discarded.

Each station can receive point-to-multipoint data from up to eight stations. Each send station does not
limit the number of stations that receive point-to-multipoint data.

The point-to-multipoint sending function allows a station to modify the same parameter number on
multiple stations and implement synchronization.

3.8.7 Synchronous Write by the Master

Synchronization configuration is specific to the master and allows the master to write the multiple
registers or parameter numbers of one or more slaves. For example, the master can control multiple
servos to start or stop simultaneously by writing the H31-00 parameter number.

-190-

Chapter 3 Network Settings

1 Trigger element

For example, after you enter a trigger element in Host Syn Write Trigger Element (SM) in the configuration
wizard, double-click the master on the main interface to enter master configuration. On the Sync
Configuration interface, select a configuration condition from the Trigger Condition drop-down list. If a
trigger element is not entered in the configuration wizard, you can still open the Sync Configuration page
but the Trigger Condition drop-down list is unavailable. In this case, click Site Management on the main
interface to open the configuration wizard again and add or delete trigger elements.

Figure 3-78  Sync Configuration page for the master
When a synchronous write trigger element of the master is set to ON, all the configuration data under the
trigger element is sent in sequence. The slaves receive the data and store it in the buffer. When the master
detects that all the synchronous writes under the trigger condition are successfully sent, the master
broadcasts an effectiveness command so that all the receive slaves retrieve data from the buffer and make
the data effective.

The master supports synchronous write based on up to 8 different trigger conditions, each of which can
be configured with 16 synchronous writes. A single slave can receive up to 8 synchronous writes. A prompt
is displayed when this limit is exceeded.

2 Operation on the 32-bit register of the servo

CANlink 3.0 supports operations on 16-bit registers and parameters. To operate 32-bit registers or
parameters, use the following method:

Write the upper and lower 16-bit addresses of 32-bit registers or parameters through the synchronous
write function of the master.

For example, for parameters H11-12 (1-segment displacement) of the servo, the following operation writes
SD1000 and SD1001 of the master to H11-12 of servo 3 as lower 16 bits and upper 16 bits, respectively.

-191-

Chapter 3 Network Settings

Figure 3-79 Two 16-bit registers combined in the 32-bit format
It is recommended that you use the SET statement of the upper- and lower-edge conducting trigger
element of the M element. When operating the parameters of 32-bit addresses, you cannot only operate
the addresses of the lower and upper 16 bits or split the addresses of the lower and upper 16 bits of 32-bit
parameters to different trigger conditions.

You can use general send configuration to write the values of two consecutive SD elements to the lower
address bits of the 32-bit parameters of the servo, as shown in Figure Figure 3-18.

Figure 3-80  Writing a 32-bit value to two 16-bit registers

3.8.8 Local Slave Configuration

A local slave is a PLC working as a CANlink slave. A remote slave is attached to the master, such as a servo,
AC drive, temperature control module, or PLC. A PLC can work as a master or local slave.

Figure 3-81  Dialog box for local slave configuration
Site No.: identifies a local slave. It cannot be the same as the number of any other station in the CANlink
network. The value ranges from 1 to 63.

Baudrate: baud rate of data communication of the local slave. It must be consistent with the baud rate of
the master.

3.8.9 Device Access to the CANlink 3.0 Network

1 Connecting an AM600 series PLC to the CANlink 3.0 network

The station number and baud rate of AM600 can be set only in software. To make the settings take effect,
you need to restart the machine or download the running program again.

Each station number in the same network must be unique. If station numbers are repeated, subsequently
connected stations disable communication. Station number 0 is not allowed in the network.

-192-

Chapter 3 Network Settings

2 Connecting the MD380/500 AC drive to the CANlink 3.0 network

Installing the MD38CAN1 extension card of the AC drive

Insert the MD38CAN1 extension card into the Inovance AC drive. The extension card (CANlink) cannot
be installed or uninstalled in the power-on state. Power off the AC drive before installation, and wait 10
minutes until the power indicator of the AC drive is off. Install the extension card in accordance with the
following figure.

Insert the MD38CAN1 extension card into the AC drive and fasten screws.

Configuring the MD380/500 AC drive

To configure start/stop control of the AC drive through the CANlink network, set the command source of
the AC drive to be the communication command channel. That is, set F0-02 to 2. If start/stop control is not
required, set F0-02 based on the actual situation.

-193-

Chapter 3 Network Settings

Setting the station number

Set the station number through the Fd-02 parameter. The value ranges from 1 to 63. A value beyond the
range may result in access failure of CANlink 3.0. The modified value takes effect immediately. Each station
number in the network must be unique. If station numbers are repeated, subsequently connected stations
may disable communication.

Setting the baud rate

Set the baud rate through the Fd-00 parameter. The thousands place indicates the baud rate of CANlink.
The following table lists the mapping relationships.

Parameter Address Name Setting Range Default Value

HFd-00
Baud
rate

Ones place: Modbus

Tens place: PROFIBUS DP

Hundreds place: reserved

Thousands place: CANlink

0: 20 kbit/s

1: 50 kbit/s

2: 100 kbit/s

3: 125 kbit/s

4: 250 kbit/s

5: 500 kbit/s

6: 1000 kbit/s

5005

The baud rates of all the stations in the CANlink 3.0 network must be consistent; otherwise,
communication may be abnormal.

NOTE

MD380/500 AC drives do not support the 800 kbit/s baud rate.

3 Connecting the MD310 AC drive to the CANlink 3.0 network

Installing the MD310-CANL card

Insert the MD310-CANL card into the Inovance AC drive. Power off the AC drive before installation, and
wait 10 minutes until the power indicator of the AC drive is off. Install the extension card in accordance
with the following figure.

-194-

Chapter 3 Network Settings

Configuring the MD310

When the MD310 uses CANlink 3.0, the station number and baud rate are set by the DIP switch of the CAN
extension card. The S1 and S2 of the MD310-CANL DIP switch form a 10-bit DIP switch used to set the
communication baud rate of the CAN bus and the communication device address. Figure 3-83 shows the
numbers on the DIP switch. Bd1, 2, and 3 are used to set the baud rate, and Adr1 to 7 are used to set the
CANlink address. The ON position of the DIP switch indicates 1, and the lower position indicates 0. The
modified baud rate and station number take effect immediately.

Figure 3-82 MD310-CANL DIP switch
Setting the baud rate

The following table lists the mapping relationships between the DIP switch and the baud rate. Up to eight
baud rates can be set.

-195-

Chapter 3 Network Settings

MD310-CANL baud rates

DIP Switch Bd
Baud rate

1 2 3
0 0 0 20 kbit/s
0 0 1 50 kbit/s
0 1 0 100 kbit/s
0 1 1 125 kbit/s
1 0 0 250 kbit/s
1 0 1 500 kbit/s
1 1 0 800 kbit/s
1 1 1 1 Mbit/s

CANlink device address

MD310-CANL provides a 7-bit DIP switch for setting the CANlink communication address. Adr1 of the DIP
switch indicates the highest bit, and Adr7 indicates the lowest bit. Adr1 to 7 correspond to b6 to b0 of
a station number. The valid address setting range of the DIP switch is 1 to 63, as shown in the following
table. 0 and 64 to 127 are reserved addresses and cannot be used. The MD310-CANL card is not functional
when a reserved address is set.

MD310-CANL DIP switch addresses

DIP Switch Adr
Address

1 2 3 4 5 6 7
0 0 0 0 0 0 0 Reserved
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 2
0 0 0 0 0 1 1 3

...... ...
0 1 1 1 1 1 1 63
1 x x x x x x Reserved

For the usage instructions of the MD310-CANL extension card, see the MD310-CANL the related
descriptions of the MD310-CANL expansion card.

4 Connecting the servo to the CANlink 3.0 network

Setting the station number

Modify the station number of the servo through the H0C-00 parameter. The value ranges from 1 to 63.
A value beyond the range may result in access failure of CANlink 3.0. The modified value takes effect
immediately. Each station number in the network must be unique. If station numbers are repeated,
subsequently connected stations may disable communication.

Setting the baud rate

Modify the baud rate through the H0C-08 parameter. See the following table.

Parameter Address Setting Range Default Value

H0C-08

0: 20 kbit/s

1: 50 kbit/s

2: 100 kbit/s

3: 125 kbit/s

4: 250 kbit/s

5: 500 kbit/s

6: 800 kbit/s [1]

7: 1000 kbit/s

5

-196-

Chapter 3 Network Settings

[1] IS620P does not support the 800 kbit/s baud rate. When 6 is selected, the 1000 kbit/s baud rate is used.
The baud rate takes effect immediately after setting. The baud rates of all the stations in the network must
be consistent; otherwise, communication may be abnormal.

3.9 PROFIBUS DP Bus

Bus overview

PROFIBUS is an international and open fieldbus standard independent of device manufacturers.
PROFIBUS is widely used by automation in the manufacturing, process, building, traffic, and electricity
sectors. It becomes an European industrial standard in 1996, became an international standard in 1999,
and was approved to be the only fieldbus standard of industrial automation in the People's Republic of
China in 2001.

PROFIBUS adopts existing international standards and is based on the Open Systems Interconnection (OSI)
model, as shown in Figure 3-83. Therefore, PROFIBUS meets the open and standard requirements. In the
OSI models, predefined tasks are implemented accurately during transmission. The physical layer (first
layer) defines the physical transmission features. The data link layer (second layer) defines the bus access
protocol. The application layer (seventh layer) defines application functions.

PROFIBUS DP uses the first layer, second layer, and user interfaces. The third to seventh layers are not
described. This flow structure ensures fast and effective data transmission. The direct data link mapper
(DDLM) provides a service user interface for easy access to the second layer. The user interface defines
the application functions called by users, the system, and different devices, describes the behaviors of
different PROFIBUS DP devices, and provides the RS-485 transmission technique or optical fibers.

Figure 3-83  PROFIBUS DP fieldbus model

PROFIBUS DP is used for field high-speed data transmission. The master reads the input information
of slaves and sends output information to slaves periodically. In addition to periodic transmission of
user data, PROFIBUS DP also provides aperiodic communication required by smart field devices for
configuration, diagnosis, and alarm handling.

3.9.1 General Process of Using PROFIBUS DP

The general process of using PROFIBUS DP is as follows:

1) Design the hardware network structure of PROFIBUS DP.

2) Activate the PROFIBUS DP bus in network configuration. The PROFIBUS DP master is automatically
added after the bus is activated.

file:///C:\Users\c3291\AppData\Roaming\Microsoft\Word\ss

-197-

Chapter 3 Network Settings

3) On the Network Configuration tab page, add PROFIBUS DP slaves and modules based on the
hardware structure. Before adding a third-party slave, import a GSD file to import the third-party
slave on the Network Configuration tab page. Before adding an AM600 slave, add an I/O module in
hardware configuration. A PROFIBUS DP slave is a remote DP device.

4) Set the master parameters, slave parameters, and module parameters properly. In normal cases, the
slave node ID is automatically generated, I/O mapping is automatically generated based on the GSD
file, and some special settings need to be modified manually.

When setting the parameters of the master and slave, ensure that the baud rates of the master and slave
are adaptive and that the configured slave node ID matches with the DIP switch setting of the actual slave
node ID.

3.9.2 PROFIBUS DP Master Configuration

1 Master parameter settings

Figure 3-84 PROFIBUS DP master configuration page

Basic parameters

 ■ Station Address: unique identifier of the master in the PROFIBUS DP network. The default value is 1,
and the value range is 1 to 126, in the decimal format.

 ■ Highest station address: maximum station address for token transfer. The default value is 126.

 ■ Watch Dog Control: watch dog time transferred to the slave, used to determine the master-slave
connection.

Bus parameters

 ■ Baud rate: baud rate of transmission along the bus. The unit is kbit/s,. The optional values are 9.6,
19.2, 45.45, 93.75, 187.5, 500, 1500, 3000, 6000, and 12000. The default value is 1500.

NOTE

Set the baud rate properly based on different communication distances and the number of
communicating stations. The PROFIBUS subnet works properly only with matching parameters of the
bus configuration file. You can change the default settings only if you are familiar with the parameter
allocation of the PROFIBUS bus configuration file. It is recommended that the default bus parameter
settings be used.

file:///C:\Users\c3291\AppData\Roaming\Microsoft\Word\ss
file:///C:\Users\c3291\AppData\Roaming\Microsoft\Word\ss

-198-

Chapter 3 Network Settings

2 Stop setting on failure

The Stop Setting on Failure function determines whether to stop slave operation when a slave or module
is faulty or the configuration is inconsistent. This function is only applicable to AM600 PROFIBUS DP
slaves.

 ■ Setting list on slaves failure: You can view and set whether to stop operation upon slave failure or
inconsistent configuration.

In the Stopped On Failure column, you can set whether to stop slave operation when the specified
slave or module is faulty. If the check box under Stopped On Failure is selected, the slave stops
running when it is faulty or when the I/O module with the diagnosis and report function enabled is
faulty.

 ■ Click OK or Cancel to save or cancel the settings on the Stop Setting on Failure page.

3 PROFIBUS DP master I/O mapping

For the general description of I/O mapping and instructions on this page, see "I/O mapping."

4 State

The state configuration editor for the PROFIBUS DP bus or modules displays state information (such as
Running and Stopped) and the status of the internal bus system.

5 Information

The following basic information about the currently available device is displayed: name, vendor, type,
version, module number, and description.

3.9.3 PROFIBUS DP Slave Configuration

To configure a PROFIBUS DP slave, you mainly need to set the basic slave parameters and the slave
parameters declared in GSD.

1 Slave parameter setting

Figure 3-85  PROFIBUS DP slave parameter setting

file:///C:/Users/c3350/Desktop/%e4%b8%ad%e5%9e%8bPLC%e7%bc%96%e7%a8%8b%e8%bd%af%e4%bb%b6%e6%89%8b%e5%86%8c1022(1)/core.deviceeditor.editor.chm::/I_O_Mapping.htm

-199-

Chapter 3 Network Settings

Basic parameters

 ■ Station address: unique identifier of a slave in the PROFIBUS DP network. The value range is 1 to 125,
and the default value is 2. It must be a decimal value and consist with the slave identifier (DIP switch
setting).

 ■ ID number: unique identifier of the slave, which is determined by the GSD file.

 ■ T_SDR: minimum response interval of the slave, that is, the minimum interval for the slave to return
a response after receiving data from the master.

 ■ Lock/Unlock: current status of the slave.

User parameters

User parameters are defined by the GSD file and can be displayed in the decimal or hexadecimal format.
For details, see the manual provided by the device vendor.

2 Slave diagnosis

The diagnosis function indicates the running status of slave nodes.

Diagnosis explanation:

Figure 3-86 Diagnosis packet structure

-200-

Chapter 3 Network Settings

Table 3-5  Meaning of station status 1

Bit Definition Cause and Solution

0 0:
The DP master cannot address the
DP slave, and this bit of the DP slave
is always 0.

Check whether the PROFIBUS address of the DP slave is
correct.

Check whether the bus connector and FOC are connected.

Check the voltage of the DP slave.

Check whether the settings of the RS485 relay are correct.

Check whether the DP slave is reset (enabled or disabled).

1 1:
The DP slave is not ready for data
exchange.

Wait until the DP slave is started.

2 1:

The configuration data that the
DP master sends to the DP slave
does not match with the actual
configuration of the DP slave.

Check whether the station type entered in the configuration
software or the DP slave configuration is correct.

3 1: External diagnosis is available.

Evaluate the identifier-related diagnosis, module status, and/
or channel-related diagnosis. Bit 3 is reset after all the errors
are fixed.

This bit is reset when a new diagnosis message is generated in
the preceding diagnosis bytes.

4 1:
The slave does not support the
requested function.

Check the configuration.

5 1:
The DP master fails to parse the
response of the DP slave.

Check the bus configuration.

6 1:
The DP slave type does not match
with the software configuration.

Check whether the configuration software of the station type
is configured correctly.

7 1:

Other DP masters (not the DP master
currently accessing the DP slave)
have been configured for the DP
slave.

This bit is always 1 when the DP slave is accessed through a
programming device or other DP masters.

The PROFIBUS address of the DP master configured for the DP
slave is located in the "master PROFIBUS address" diagnosis
byte.

Table 3-6 Meaning of station status 2

Bit Definition

0 1: The DP slave must be reconfigured.

1 1: The slave is in the startup phase.

2 1: This bit of the DP slave is always 1.

3 1: Response monitoring is enabled for the DP slave.

4 1: The DP slave has received the FREEZE control command.

5 1: The DP slave has received the SYNC control command.

6 0: This bit is always 0.

7 1:
Activation of the DP slave is canceled. That is, the DP slave is removed from current
processing.

-201-

Chapter 3 Network Settings

Table 3-7  Meaning of station status 3

Bit Definition

0 to 6 0: This bit is always 0.

7 1:
The number of channel-specific diagnosis messages exceeds the number of messages
allowed by diagnosis frames.

 ■ The master PROFIBUS address indicates that the PROFIBUS DP master has been configured for the
DP slave and has the read and write permissions on the slave. If the value is FF, the DP master is not
configured for the DP slave.

 ■ The manufacturer ID indicates the DP slave type. It is declared by the device manufacturer and is
reflected in GSD.

3.9.4 PROFIBUS DP Module

1 Modular device and non-modular device

In PROFIBUS DP slave configuration, you can connect DP slave nodes to the following two types of
devices:

Modular device: It is connected to a DP slave node and provides an I/O mapping list. The PROFIBUS DP
Slave I/O Mapping dialog box is not required. The data of slave nodes increases as modules are added.
Currently, the AM600 I/O module is a type of modular device.

Non-modular device: The slave node dialog box includes the I/O mapping dialog box. Data cannot be
configured automatically.

2 AM600 PROFIBUS DP I/O module

Add the AM600 PROFIBUS DP I/O module in hardware configuration, and set related I/O parameters and
add I/O mappings to refresh data. For details, see "CPU > I/O module."

3.10 HMI Communication Configuration

3.10.1 Communication Configuration

This drive component reads and writes the data of various registers of Inovance medium-sized PLCs based
on the Modbus TCP/IP protocol through the InoTouch Editor software configuration.

The HMI supports the 01, 31, 03, 33, 05, 35, 06, 36, 0F, 3F, 10, and 40 parameters. For details about the
parameters, see the HMI user manual.

Drive type Desciption

Communication protocol The Modbus TCP/IP protocol of the Inovance AM600 series PLC is used.

Communication mode
One master and one slave; one master and multiple slaves. The drive component is
the master, and devices are the slaves.

Communication device
Ethernet subdevices must be attached to the general TCP/IP parent devices to work
properly.

1 Hardware connection

Ensure that hardware is connected correctly before configuring communication between the InoTouch
Editor software and devices.

mk:@MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/home.htm
mk:@MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/CANopen_I_O_Mapping.htm
mk:@MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/CANopen_I_O_Mapping.htm
mk:@MSITStore:C:\Program%20Files%20(x86)\Schneider%20Electric\SoMachine\CoDeSys\Online%20Help\zh-chs\core.DeviceEditorCANbus.editor.chm::/CANopen_I_O_Mapping.htm
file:///C:\Users\c3291\AppData\Roaming\Microsoft\Word\sss
file:///C:\Users\c3291\AppData\Roaming\Microsoft\Word\hhh

-202-

Chapter 3 Network Settings

Connection method: Use an RJ-45 network cable to directly connect the HMI to the PLC (use a
straight- through network cable or hub switch).

2 Device communication parameters

Set the client communication parameters of InoTouch Editor as follows:

When communication setup is in progress, select Ethernet and add a device as follows:

 ■ PLC IP addr.: Enter the IP address of the PLC based on the actual setting.

 ■ Port No.: port used to send and receive data frames by the host computer and lower computer. The
default value is 502. It is recommended that the default value be used.

Retain the default settings of other parameters.

3 Communication configuration

Set the parameters of the Inovance AM600-ModbusTCP subdevice as follows:

 ■ Response delay: interval between frame sending and reception startup. The default value is 0 ms.

-203-

Chapter 3 Network Settings

4 Collection channel

Communication status

Communication Status Value Meaning

Communication normal The current communication is normal.

Command failed The read and write commands of the device fail to be executed.

Check failed An error occurred while checking collected data.

Communication timeout No collected data is returned.

5 Internal attributes

You can add a channel by using internal attributes. This drive component supports the Modbus TCP
registers of Inovance AM600 series PLC. The following table lists the parameters.

Register Data Type
Read

Parameter
Write

Parameter
Operation Channel Example

[SM area] Input
coil

BT 31 35 and 3F
Read and
write

"SM read-only 0000" indicates SM
area address 0.

[Q area] output
coil

BT 01 05 and 0F
Read and
write

"Q read-write 0001"

indicates Q area address 1.

[SD area] Input
register

16-bit-BCD

32-bit-BCD

16-bit-unsigned

16-bit-signed

32-bit-unsigned

32-bit-unsigned

32-bit-float

33 36 and 40
Read and
write

"SD read-only 0002" indicates SD
area address 2.

[M area] Output
register

16-bit-BCD

32-bit-BCD

16-bit-unsigned

16-bit-signed

32-bit-unsigned

32-bit-unsigned

32-bit-float

03 06 and 10
Read and
write

"M read and write 0003" indicates
M area address 3.

Parameter: [SD area] uses the 40 parameter when double-word (32-bit) data is written or multiple data
records are written in batches.

[M area] uses the 10 parameter when double-word (32-bit) data is written or multiple data records are
written in batches.

NOTE

When a channel is added by using internal attributes, the start address is 0 (protocol address), which
complies with the Modbus TCP protocol of Inovance AM600.

-204-

Chapter 3 Network Settings

3.10.2 Communication Example

1 Bit variable read and write

A bit status indicator and a bit status switch are provided.

Modify the general attributes of the bit status indicator. Set the address to Q_bit(0:0).

Modify the general attributes of the bit status indicator. Set the address to Q_bit(0:0).

2 Word variable read and write

Select the numeric value input control, as shown in the following figure.

Modify the general attributes of the numeric value input control. Set the address to MW0.

-205-

Chapter 3 Network Settings

3.10.3 Fault Analysis

Fault Symptom Analysis Solution

Communication
timeout

An error occurs during
collection initialization.

No collected data is returned.

(Incorrect communication
hardware connection and
parameter settings)

1. Check whether the parameter settings of network devices are
correct.
2. Check whether the COM port is occupied by other programs.
3. Check whether the communication cable is connected correctly.

4. Check whether the data read address exceeds the specified range.

Command failed
The read and write
operations fail.

1. Check whether the data read address exceeds the specified range.

2. Check whether the communication cable is too long, and perform
short-distance testing.
3. Check whether onsite interferences are excessive, and prevent
interferences in the surrounding environment.

1 Registers and parameters supported by the drive component

Register Read Parameter Write Parameter Parameter

[SM area] Input coil 31
35

3F

31: Read the input coil status

35: Enforce a single input coil

3F: Enforce multiple input coils

[Q area] output coil 01
05

0F

01: Read the output coil status

05: Enforce a single output coil

0F: Enforce multiple output coils

-206-

Chapter 3 Network Settings

Register Read Parameter Write Parameter Parameter

[SD area] Input
register

33
36

40

33: Read the input register

36: Preconfigure a single register

40: Preconfigure multiple registers

[M area] Output
register

03
06

10

03: Read the holding register

06: Preconfigure a single register

10: Preconfigure multiple registers

Note:

1) This drive component supports the 01, 31, 03, 33, 05, 35, 06, 36, 0F, 3F, 10, and 40 parameters. Other
parameters not used by data communication are not supported.

2) The preceding parameters adopt the hexadecimal format. Parameters 0x0F and 0x10 correspond to
15 and 16 in the decimal format.

3) The [SM area] input coil uses the 3F parameter when writing multiple relays in batches.

4) The [Q area] output coil uses the 0F parameter when writing multiple relays in batches.

5) The [SD area] output register uses the 40 parameter when double-word (32-bit) data is written or
multiple data records are written in batches.

6) The [M area] output register uses the 10 parameter when double-word (32-bit) data is written or
multiple data records are written in batches.

NOTE

When a register channel is added, the start address is 0 (protocol address), which complies with the
Modbus protocol of Inovance AM600.

2 Data type table

BTdd Bit (dd range: 00 to 15)

16-bit-BCD 16-bit BCD

32-bit-BCD 32-bit BCD

16-bit-unsigned 16-bit unsigned

16-bit-signed 16-bit signed

32-bit-unsigned 32-bit unsigned

32-bit-unsigned 32-bit signed

32-bit-float 32-bit floating point number

3 32-bit data storage in registers

1) Mapping relationship between the variable name and register address in the PLC project (16-bit
register)

 ■ Variable %MW5 corresponds to register address 5.

 ■ Variable %MD5 corresponds to register address 10.

Variable name prefix: W - word (16 bits); D - double word (32 bits).

2) The addresses of drive device commands and channel collection registers start from 0. 0 indicates
that the register address is 0.

3) When 32-bit data is read or written, two registers (32 bits) starting from the corresponding register
address are occupied.

Chapter 4 Programming
Basics

4.1 Direct Address ...208

4.1.1 Syntax ...208

4.1.2 PLC Direct Address Storage Area ..209

4.2 Variable ..209

4.2.1 Variable Definition ...209

4.2.2 Variable Type ..216

4.3 Constant ...223

-208-

Chapter 4 Programming Basics

4 Programming Basics
Operands are the objects in user programs related to operators, functions, function blocks, or program
operations. They can be used as input, output, and intermediate stored results. The common operands of
CoDeSys include direct addresses, constants, and variables.

Similar to other advanced languages, CoDeSys also provides constants and variables. Constants
are unchanged numeric values. Variables are user-defined identifiers. Variables are stored in user-
specified addresses of the %I, %Q, and %M areas. If addresses are not specified, variables are stored in
system- allocated addresses. You do not need to concern the variable storage location.

4.1 Direct Address

A direct address, also called fixed address or direct variable, has a direct mapping to a specific address
of the PLC. The address information includes the variable storage location in the CPU, storage size, and
storage position offset.

4.1.1 Syntax

Syntax: %<store area prefix><size prefix><number>|.<number>

 ■ The programming system supports the following three storage area prefixes:

1) I: input, physical input, sensor

2) Q: output, physical output, executor

3) M: storage location

 ■ The programming system supports the following size prefixes:

1) X: bit, 1 bit

2) B: byte, 1 byte

3) W: word, 1 word

4) D: double word, 4 bytes (double byte)

 ■ The first number indicates the offset address of the memory prefix corresponding to the variable.
The number following "." indicates the specific bit after the address offset when the variable is of the
boolean type.

Example:

%QX7.5 output area with 7-byte offset, sixth bit (bit 5)

%QX17 output area with 17-byte offset

%IW215 input area with 215-word offset

%MD48 memory area with 48-double word offset

iVar AT %IW10: WORD;//The variable iVar is of the word type and maps to the location with 10-word offset
in the input area.

NOTE

 ◆ When a variable with the X-type size prefix indicates the boolean data type, the offset address
needs to be precise to bits.

 ◆ The size prefix matches with the data type. A variable with the B-type size prefix must be declared
as a 1-byte data type, such as BYTE, SINT, and USINT. A variable with the W-type size prefix must
be declared as a 1-word data type, such as WORD, INT, and UINT. A variable with the D-type size
prefix must be declared as a double-word data type, such as DWORD, DINT, and UDINT.

-209-

Chapter 4 Programming Basics

4.1.2 PLC Direct Address Storage Area

The direct address storage area varies depending on different PLCs. PLC data is not retained upon power
failure for the %I and %Q areas, but is retained for the %M area.

The AM600, AM610, AM401, and AM402 programming systems provide the 128 KB (byte) input area (I area),
128 KB (byte) output area (Q area), and 512 KB storage area (M area). The first 480 KB of the storage area
can be used directly, whereas the last 32 KB are used by the system, mainly as soft elements, and cannot
be used directly by users. During programming, you can directly access addresses, or define variables and
map the variables to addresses for indirect access. The following table lists the storage areas and address
ranges.

Area Function Size Address Range

I area (%I), 128 KB Area used by users 64 Kwords %IW0 to %IW65535

Q area (%Q), 128 KB Area used by users 64 Kwords %QW0 to %QW65535

M area (%M), 512 KB

Area used by users 240 Kwords %MW0 to %MW245759

SD element 10,000 words %MW245760 to %MW255759

SM element 10,000 bytes %MB511520 to %MB521519

Reserved 2768 bytes %MB521520 to %MB524287

The AC800 and AC811 programming systems provide the 128 KB (byte) input area (I area), 128 KB (byte)
output area (Q area), and 5 MB storage area (M area). The AC800 and AC811 series do not support soft
elements. The %M area address can be used as needed. The following table lists the storage areas and
address ranges.

Area Function Size Address Range

I area (%I), 128 KB Area used by users 64 Kwords %IW0 to %IW65535

Q area (%Q), 128 KB Area used by users 64 Kwords %QW0 to %QW65535

M area (%M), 5MB Area used by users 2.5 Mwords %MW0 to %MW2321439

4.2 Variable

Variables can be defined by the POU, automatic declaration dialog box, and the DUT or GVL editor.
Variable types are identified through variable type keywords. For example, VAR and END_VAR identify
local variables.

Variable types include local variable (VAR), input variable (VAR_INPUT), output variable (VAR_OUTPUT),
I/ O variable (VAR_IN_OUT), global variable (VAR_GLOBAL), temporary variable (VAR_TEMP), static variable
(VAR_STAT), and configuration variable (VAR_CONFIG).

4.2.1 Variable Definition

Variables can be edited in the declaration editor. The declaration editor is displayed in the text view or
table view. Figure 4-1 shows the declaration editor of POU in the text view.

-210-

Chapter 4 Programming Basics

-210-

1 -Switch between the text view and table view

Figure 4-1  Declaration editor in the text view
Figure 4-2 shows the declaration editor in the table view.

1 -Switch between the text view and table view
Figure 4-2 Declaration editor in the table view

Syntax: <identifier> {AT <address>}:<data type> {:=<initial value>};
The parts enclosed by braces ({}) are optional.

1 Identifier

An identifier is the name of a variable. The variable naming conventions are as follows:

1) The name cannot contain spaces or special characters.

2) The name cannot contain predefined keywords.

3) The name is case-insensitive.

4) The name length is unlimited.

5) The name cannot be defined repeatedly.

A local variable name can be the same as a global variable name. By default, the local variable is used
and can indicate a global variable. A specific variable can also be indicated by a full path variable name.
Example: local variable iVar: = 1; global variable .iVar: = 2; full path variable globlist1.iVar: = 3;

Consider naming suggestions when you name a variable. For example, a variable name must
accurately indicate the meaning and data type of the variable, and the Hungarian naming method

-211-

Chapter 4 Programming Basics

-211-

(variable name = attribute + type + object description) is recommended.

2 AT address

An AT address is a direct address. For details, see section "5.1 Programming Languages Supported by
InoProShop".

3 Data type

Data types are classified into standard data type and user-defined data type.

1) Standard data type

Standard data types are classified into boolean, integer, floating point, string, and time.

Type Keyword Range Memory Usage

Boolean BOOL TRUE, FALSE, 0, and 1 8 bits

Bit type BIT
TRUE, FALSE, 0, and 1, only used in structures or function
blocks

1 bit

Integer

BYTE 0 to 255 8 bits

WORD 0 to 65535 16 bits

DWORD 0 to 4294967295 32 bits

LWORD 0 to (264 – 1) 64 bits

SINT -128 to +127 8 bits

USINT 0 to 255 8 bits

INT -32768 to +32767 16 bits

UINT 0 to 65535 16 bits

DINT -2147483648 to +2147483647 32 bits

UDINT 0 to 4294967295 32 bits

LINT -263 to (263 – 1) 64 bits

ULINT 0 to (264 – 1) 64 bits

Floating
point

REAL (1.401e – 45) to (3.403e + 38) 32 bits

LREAL
(2.2250738585072014e – 308) to (1.7976931348623158e +
308)

64 bits

String

STRING

Only ASCII characters are supported. Chinese characters
are not supported. By default, the maximum length is
80 characters. The part exceeding the maximum length
is truncated. The maximum character length can be
declared, for example, str:STRING(35):='This is a String'. A
string function supports up to 255 characters.

Strings are stored
in the ASCII format.
The terminator is
stored as 1 byte.

WSTRING

Only Unicode characters (including Chinese characters)
are supported. By default, the maximum length is 80
characters. The part exceeding the maximum length
is truncated. The maximum character length can be
declared, for example, wstr:WSTRING(35):="This is a
WString";.

Strings are stored
in the Unicode
format. The
terminator is
stored as 2 bytes.

Time

TIME

TIME_OF_DAY(TOD) Time range within one day

DATE Starting from January 1, 1970

DATE_ADN_TIME(DT) Starting from January 1, 1970

-212-

Chapter 4 Programming Basics

2) User-defined data type

User-defined data types include array, structure, enumeration, association, alias, subset, reference, and
pointer. In AM600 programming software InoProShop, right-click an application and choose Add Object
> DUT from the context menu to add the following four user-defined data types: structure, enumeration,
association, and alias.

 ■ Array

Syntax: <Array_Name>:ARRAY [<ll1>..<ul1>,<ll2>..<ul2>,<ll3>..<ul3>] OF <elem. Type>

ll1, ll2, and ll3 define the lower limit of the area, whereas ul1, ul2, and ul3 define the upper limit. The
numeric value must be an integer. elem. Type indicates the data type of each array element.

Initialization and example

Card_game: ARRAY [1..13, 1..4] OF INT;

arr1 : ARRAY [1..5] OF INT := [1,2,3,4,5];

arr2 : ARRAY [1..2,3..4] OF INT := [1,3(7)]; (*array value 1,7,7,7*)

arr3 : ARRAY [1..2,2..3,3..4] OF INT := [2(0),4(4),2,3]; (*array value
0,0,4,4,4,4,2,3*)

arr1 : ARRAY [1..10] OF INT := [1,2]; (*Array initialization. Uninitialized elements adopt the
default value 0.*)

Example of array structure initialization

Structure definition:

TYPE STRUCT1

STRUCT

 p1:int;

 p2:int;

 p3:dword;

END_STRUCT

END_TYPE

Array structure initialization:

arr1:ARRAY[1..3] OF STRUCT1:= [(p1:=1,p2:=10,p3:=4723),(p1:=2,p2:=0,p3:=299),(p1

:=14,p2:=5,p3:=112)];

Syntax of access association elements:

<Array-Name>[Index1,Index2].

Example:

Card_game [9,2]

 ■ Structure

Syntax:

TYPE <structurename> | EXTENDS DUTTYPE:

STRUCT

 <declaration of variables 1>

-213-

Chapter 4 Programming Basics

 ...

 <declaration of variables n>

END_STRUCT

END_TYPE

<structurename> is a type and can be used as a data type. EXTENDS DUTTYPE is optional and indicates
inheritance from the members of DUTTYPE. Variables of the structurename type can be used to access the
members of DUTTYPE. DUTTYPE is of the structure, association, or alias type.

Initialization and example

Polygonline structure definition:

TYPE Polygonline:

STRUCT

 Start:ARRAY [1..2] OF INT;

 Point1:ARRAY [1..2] OF INT;

 Point2:ARRAY [1..2] OF INT;

 Point3:ARRAY [1..2] OF INT;

 Point4:ARRAY [1..2] OF INT;

 End:ARRAY [1..2] OF INT;

END_STRUCT

END_TYPE

Initialization:

Poly_1:polygonline := (Start:=[3,3], Point1:=[5,2], Point2:=[7,3],

Point3:=[8,5], Point4:=[5,7], End:= [3,5]);

Syntax of access structure elements:

<structurename>.<variable>

Example:

Poly_1.Start

 ■ Enumeration

An enumerated value consists of several constants.

Syntax:

TYPE <identifier>:(<enum_0> ,<enum_1>, ...,<enum_n>) |<base data type>;

END_TYPE

identifier: user-defined enumeration type; enum_n: constant value of the enumeration type. Each
constant can declare its value. If no value is declared, the default value is used. The data type of
enumerated constants is base data type. The value may not be declared and is an integer by default.

Initialization and example

TYPE TRAFFIC_SIGNAL: (red, yellow, green:=10); (* red indicates the initial value 0,
yellow indicates the initial value 1, and green indicates the initial value 10. *)

-214-

Chapter 4 Programming Basics

END_TYPE

TRAFFIC_SIGNAL1 : TRAFFIC_SIGNAL;

TRAFFIC_SIGNAL1:=0; (* The value of the enumerated variable is red. *)

FOR i:= red TO green DO

 i := i + 1;

END_FOR;

 ■ Association

Syntax:

TYPE <unionname>:UNION

 <declaration of variables 1>

 ...

 <declaration of variables n>

END_UNION

END_TYPE

< unionname > is a type and can be used as a data type. All variables of the association type share the
same storage location and are allocated with space the same as that of the variable that occupies the
largest space.

Example

TYPE union1: UNION

a : LREAL;

b : LINT;

END_UNION

END_TYPE

Syntax of access array elements:

< unionname >.<variable>

Example

union1.a

 ■ Alias

A data type can be expressed by an alias.

Syntax:

TYPE <aliasname>:basetype END_TYPE

aliasname indicates the alias type and is used as a data type. basetype is a standard or user-defined data
type.

Example

TYPE alias1 : ARRAY[0..200] of byte; END_TYPE

The initialization and access mode are consistent with the basic type.

-215-

Chapter 4 Programming Basics

 ■ Subset

The subset data type is a subset of the defined basic data type. A subset type can be added by adding a
DUT. A variable can be directly declared as a subset type.

Syntax of DUT objects:

TYPE <name> : <Inttype> (<ug>..<og>) END_TYPE;

name: valid IEC identifier.

Inttype: a data type, such as SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD, and DWORD (LINT, ULINT,
and LWORD).

ug: a constant, which must be compatible with the basic type and sets the lower boundary of the range
types. The lower boundary itself is included in this range.

og: a constant, which must be compatible with the basic type and sets the upper boundary of the range
types. The upper boundary itself is included in this basic type.

Example of DUT object declaration

TYPE

SubInt : INT (-4095..4095);

END_TYPE

Example of direct variable declaration

VAR

 i : INT (-4095..4095);

 ui : UINT (0..10000);

END_VAR

 ■ Reference

Reference is the alias of an object. Operating references is equivalent to operating objects.

Syntax:

<identifier> : REFERENCE TO <data type>

identifier: reference identifier. data type: data type of the referenced object.

Example and initialization

ref_int : REFERENCE TO INT;

a : INT;

b : INT;

ref_int REF= a; (* ref_int references a. *)

ref_int := 12; (* a is set to 12. *)

b := ref_int * 2; (* b is set to 24. *)

ref_int REF= b; (* ref_int references b. *)

ref_int := a / 2; (* b is set to 6. *)

NOTE

The bit type cannot be referenced. That is, ref1:REFERENCE TO BIT. cannot be defined.

-216-

Chapter 4 Programming Basics

 ■ Pointer

A pointer stores the address of an object and can point to any data type (except the bit type).

Syntax:

<identifier>: POINTER TO <data type>;

identifier: pointer identifier. data type: data type pointed to by a pointer.

Pointers are operated by using address operators. Address operators include ADR (variable address
acquisition) and ^ (value of a variable address).

Example and initialization

VAR

 pt:POINTER TO INT; (* Declares the pointer pt of the INT type.*)

 var_int1:INT := 5;

 var_int2:INT;

END_VAR

pt := ADR(var_int1); (* Allocates the address of the varint1 variable to the pointer pt. *)

var_int2:= pt^; (* Uses the ^ address operator to obtain the value of the pointer.*)

pt^:=33; (*Assigns a value to the var_int1 variable corresponding to the pointer.*)

4 Initial value

By default, the initial value of a variable is 0. You can add user-defined initial values by using the valuation
operator ":=" during variable declaration. An initial value is a valid ST expression. An ST expression
consists of operators, operands, and a valuation expression. Operators mainly include addition (+),
subtraction (–), multiplication (*), and division (/). Operands mainly include constants, variables, and
functions. A valuation expression is the operator in the ST expression used to assign values to variables.
Therefore, constants, variables, or functions can be initialized. Ensure that the used variables have been
initialized.

Example:

VAR

var1:INT := 12; (* The initial value of the integer variable is 12.*)

x : INT := 13 + 8; (*Defines the initial value of the constant expression.*)

y : INT := x + fun(4); (*Includes function call in the initial value.*)

z : POINTER TO INT := ADR(y); (*Initializes the pointer by using the address function ADR.*)

END_VAR

NOTE

 ◆ The global variable table (GVL) is initialized before POU local variables are defined.
 ◆ If the default value is modified online, the pointer is not initialized during definition and still
points to the variable before online modification.

4.2.2 Variable Type

The main variable types include local variable (VAR), input variable (VAR_INPUT), output variable (VAR_
OUT), I/O variable (VAR_IN_OUT), global variable (VAR_GLOBAL), temporary variable (VAR_TEMP), static
variable (VAR_STAT), and configuration variable (VAR_CONFIG).

-217-

Chapter 4 Programming Basics

Declaration syntax of the variable type: <type_key> |atribute_key

variable1;

variable2;

...

END_VAR

type_key: type keyword, which may be VAR (local variable), VAR_INPUT (input variable), VAR_OUTPUT
(output variable), VAR_IN_OUT (I/O variable), VAR_GLOBAL (global variable), VAR_TEMP (temporary
variable), VAR_STAT (static variable), and VAR_CONFIG (configuration variable).

atribute_key: attribute keyword, which may be RETAIN, PERSISTENT, or CONSTANT. It defines the range of
a variable. The following details attribute keywords.

 ■ RETAIN variable (reserved)

The RETAIN variable retains the original value when the PLC restarts upon power failure or is reset in hot
mode. RETAIN is stored in a specified RETAIN storage area. An example is the counter of a production
machine. The counter starts counting again from the breakpoint upon power failure.

Example

Define the RETAIN variable in programs:

PROGRAM PLC_PRG

VAR RETAIN

 iRem1 : INT;

END_VAR

Define the RETAIN variable in the global variable table:

VAR_GLOBAL RETAIN

 gvarRem1 : INT;

END_VAR

NOTE

 ◆ If the RETAIN variable is declared in programs, only this variable is stored in the RETAIN storage
area.

 ◆ If the RETAIN variable is declared in function blocks, the entire function sample data is stored in
the RETAIN storage area, but only the RETAIN variable is processed as a reserved variable.

 ◆ If the RETAIN variable is declared in functions, the declaration does not take effect.

 ■ PERSISTENT variable

The definition of VAR PERSISTENT is always the same as that of VAR PERSISTENT RETAIN or VAR RETAIN
PERSISTENT. That is, the PERSISTENT variable supports value retention upon cold reset and program
download, in addition to the features (value retention upon power failure and hot reset) of the RETAIN
variable. The PERSISTENT variable is initialized only when the initial value is reset. A program runtime
counter is a common PERSISTENT variable. The counter continues counting when the power supply fails
or the program is redownloaded.

Example

Example of the PERSISTENT variable table:

VAR_GLOBAL PERSISTENT RETAIN

 iVarPers1 : DINT; bVarPers : BOOL;

//Right-click the PERSISTENT variable table editor to add the path of a PERSISTENT variable instance.

-218-

Chapter 4 Programming Basics

PLC_PRG.PERS: INT; (* Defines the PERSISTENT variable named PERS in the PLC_PRG
program. *)

END_VAR

NOTE

 ◆ An application has only one PERSISTENT variable table. The only method to add a PERSISTENT
variable table is to right-click an application and choose Add Object > Persistent Variable from
the context menu.

 ◆ You can add a PERSISTENT variable by using the PERSISTENT attribute in a program. In the
PERSISTENT variable editor, right-click and choose Add all instance paths from the context
menu to add the PERSISTENT variables in all the programs to the PERSISTENT variable table.

The following table lists the situations where a variable retains the original value or is initialized in the
cases of reset and power failure.

x = retain the original value - = initialize the value

Action VAR VAR RETAIN

VAR PERSITENT or

VAR PERSITENT RETAIN or

VAR RETAIN PERSITENT

Power failure - x x

Hot reset - x x

Cold reset - - x

Initial value reset - - -

Program download - - x

Online modification x x x

Note:

1) The RETAIN variable and PERSISTENT variable are reserved variables and are stored in the same
reserved variable area of the programming system.

2) The direct variables mapped to the %M address can be declared as reserved variables, whereas the
direct variables mapped to %I and %Q cannot be declared as reserved variables. (Reserved variables
cannot be declared as direct variables during automatic declaration. Therefore, %M direct variables
only support manual input.)

3) The specific reserved variable area of the programming system is 512 KB in size. This area does not
contain the reserved variables mapped to the %M address (the available size of the %M address is 480
KB and can be used by reserved variables). That is, the maximum size of available reserved variables
is 992 KB (512 KB + 480 KB).

 ■ CONSTANT

For details about constant declaration, see section "5.2 Structured Text (ST)".

1 Local variable (VAR)

The variables between VAR and END_VAR within POU are local variables and cannot be accessed
externally.

Valuation format:

Local variable:=Value

-219-

Chapter 4 Programming Basics

Example

VAR

 iLoc1:INT; (* Local variable*)

END_VAR

2 Input variable (VAR_INPUT)

The variables between VAR_INPUT and END_VAR within POU are input variables and assigned values in
the call location.

POU call format:

Local variable:=Value input by the caller

Example

VAR_INPUT

 iIn1:INT; (* Input variable*)

END_VAR

NOTE

Input variables can be modified within POU, even when the CONSTANT attribute is added.

3 Output variable (VAR_OUTPUT)

The variables between VAR_OUTPUT and END_VAR within POU are output variables. Output variables can
be returned to the caller during the call process for further processing.

POU call format:

Output variable=>variable of the caller-matched type

Example

VAR_INPUT

 iOut1:INT; (* Output variable*)

END_VAR

NOTE

 ◆ For FUNCTION and METHOD, return values and output variables are supported, but a caller needs
to be allocated for receiving the variables during the call process. Example: fun(iIn1 := 1, iIn2 := 2,
iOut1 => iLoc1, iOut2 => iLoc2);

 ◆ The output variables of function blocks can be assigned to the caller after the call process.

4 I/O variable (VAR_IN_OUT)

The variables between VAR_IN_OUT and END_VAR within POU are I/O variables. I/O variables can be
transferred to the called POU and modified within the called POU. In the actual situation, the variables
transferred to the called POU are referenced by the caller.

Example

VAR_IN_OUT

 iInOut1:INT; (* I/O variable*)

END_VAR

-220-

Chapter 4 Programming Basics

NOTE

 ◆ Because the variables transferred to the called POU are referenced by the caller, the I/O variables
in function block instances cannot be accessed directly. That is, <FBinstance>.<InOutVariable>
cannot be used directly. The reason is that input variables are referenced by the caller and have
been changed.

 ◆ I/O variables cannot be constants or direct variables of the bit type, such as xBit0 AT %I2.0:BOOL.
Add the CONSTANT attribute (VAR_IN_OUT CONSTANT) to declare I/O variables. To use direct
variables of the bit type, you need to add an intermediate variable as an I/O variable and assign
the value of the intermediate variable to the direct variable of the bit type.

Example of a direct variable of the bit type:

VAR_GLOBAL

 xBit0 AT %MX0.1 : BOOL;(*Declare a direct variable of the bit type.*)

 xTemp : BOOL; (*Intermediate variable*)

END_VAR

//Function block with an I/O variable (xInOut)

FUNCTION_BLOCK FB_Test

VAR_INPUT

 xIn : BOOL;

END_VAR

VAR_IN_OUT

 xInOut : BOOL;

END_VAR

IF xIn THEN

 xInOut := TRUE;

END_IF

 //Calls the function block in the program.

PROGRAM Main

VAR

 xIn : BOOL;

 I1 : FB_Test;

 I2 : FB_Test;

END_VAR

 //A compiling error is returned when a direct address variable of the bit type is used.

//I1(xIn:=xIn, xInOut:=xBit0);

//Uses the intermediate variable xTemp to transfer the value of xBit0 to the function block and assigns
the value of the intermediate variable to xBit0.

xTemp := xBit0;

I2(xIn:=xIn, xInOut:=xTemp);

xBit0 := xTemp;

I/O constants (VAR_IN_OUT CONSTANT) are read-only. Input variables can be modified in the current
version, even when the constant attribute is added. Therefore, the variable attribute can be changed to
non-modifiable by using an I/O constant.

-221-

Chapter 4 Programming Basics

I/O constant example:

PROGRAM PLC_PRG

VAR

 sVarFits : STRING(16);

 sValFits : STRING(16) := '1234567890123456';

 iVar: DWORD;

END_VAR

POU(sReadWrite:='1234567890123456', scReadOnly:='1234567890123456', iVar-

Read Write:=iVar);

//POU(sReadWrite:=sVarFits, scReadOnly:=sVarFits, iVarReadWrite:=iVar);

//POU(sReadWrite:=sValFits, scReadOnly:=sValFits, iVarReadWrite:=iVar);

//POU(sReadWrite:=sVarFits, scReadOnly:='23', iVarReadWrite:=iVar);

FUNCTION POU : BOOL

VAR_IN_OUT

 sReadWrite : STRING(16); (* The string can be read and written within the POU. *)

 iVarReadWrite : DWORD; (*The word and variable can be read and written within the POU.*)

END_VAR

VAR_IN_OUT CONSTANT

 scReadOnly : STRING(16); (*The string is read-only within the POU.*)

END_VAR

sReadWrite := 'string_from_POU';

iVarInPOU := STRING_TO_DWORD(scReadOnly);

5 Global variable (VAR_GLOBAL)

The variables between VAR_GLOBAL and END_VAR are global variables. Common variables, constants, and
reserved variables can be declared as global variables. In the AM600 programming software InoProShop,
right-click an application and choose Add Object > Add Global Variable from the context menu to add a
global variable table, and add global variables to the table.

Example

VAR_GLOBAL

 iGlobVar1:INT; (* Global variable*)

END_VAR

NOTE

 ◆ If a local variable has the same name as a global variable, the local variable is operated when an
operation is performed on the variable name. You can add the global range operator (.) before the
variable name to operate the global variable, such as . iGlobVar1.

 ◆ Global variables are always initialized before local variables.

6 Temporary variable (VAR_TEMP)

The variables between VAR_TEMP and END_VAR are temporary variables, which are initialized when being
called.

-222-

Chapter 4 Programming Basics

Example

VAR_TEMP

 iTemp1:INT; (*Temporary variable*)

END_VAR

NOTE

 ◆ Temporary variables are declared only in programs and function blocks.
 ◆ Temporary variables are used only in declared programs or function blocks.

7 Static variable (VAR_STAT)

The variables between VAR_STAT and END_VAR are static variables. Static variables are initialized when
being called for the first time. The variable values are returned after the POU is called.

Example

VAR_STAT

 iStat1:INT; (*Static variable*)

END_VAR

NOTE

 ◆ Static variables are declared only in function blocks, functions, and methods, but cannot be
declared in programs.

 ◆ Static variables are used only in the declared POU.

8 Configuration variable (VAR_CONFIG)

The variables between VAR_CONFIG and END_VAR are configuration variables. Configuration variables
are direct variables that are mapped to the direct variables with indefinite addresses in function blocks.
A variable with an indefinite address can be defined in a function block. The indefinite address (arbitrary
address) is indicated by "*". Add a configuration variable table (by adding a global variable table) to add
the variables with indefinite addresses in all the function block instances to the configuration variable
table, which defines all the indefinite addresses. This allows you to manage the variables with indefinite
addresses in all the function blocks.

Syntax for variables with indefinite addresses in function blocks:

<identifier> AT %<I|Q|M>* : <data type>

Addresses are finally defined in the variable configuration of the global variable list.

Example

FUNCTION_BLOCK locio

VAR

 xLocIn AT %I*: BOOL := TRUE;

 xLocOut AT %Q*: BOOL;

END_VAR

Two I/O variables, a local input variable (%I*), and a local output variable (%Q*) are defined.

A global variable list (GVL) is added. The specific addresses declared by instance variables are entered
between the keywords VAR_CONFIG and END_VAR. The instance variables include the complete instance
path of the POU. The specific addresses correspond to indefinite addresses (%I*, %Q*) in function blocks.
The data type must be consistent with that declared by function blocks.

Syntax of configuration variables:

-223-

Chapter 4 Programming Basics

<instance variable path> AT %<I|Q|M><location> : <data type>;.

Example

PROGRAM PLC_PRG

VAR

locioVar1: locio;

locioVar2: locio;

END_VAR

VAR_CONFIG (*Correct variable configuration table*)

PLC_PRG.locioVar1.xLocIn AT %IX1.0 : BOOL;

PLC_PRG.locioVar1.xLocOut AT %QX0.0 : BOOL;

PLC_PRG.locioVar2.xLocIn AT %IX1.0 : BOOL;

PLC_PRG.locioVar2.xLocOut AT %QX0.3 : BOOL;

END_VAR

NOTE

 ◆ Configuration variables are not required in normal cases. The reason is that for I/O address input
and output, variables can be mapped to I/O addresses by using an input assistant or directly
entering the instance variable path on the I/O mapping page of the corresponding module.

 ◆ Configuration variables are mapped to variables with indefinite addresses in function blocks or
programs.

 ◆ A compiling error is returned when only variables with indefinite addresses or configuration
variables exist. The two types of variables must be used in combination.

4.3 Constant

In PLC programming, constants are parameters with unchanged values, such as timer time and conversion
ratio.

Constant declaration syntax:

VAR CONSTANT

<identifier>:<type> := <initialization>;

END_VAR

Example

VAR CONSTANT

c_iCon1:INT:=12;

END_VAR

CoDeSys supports constants of multiple data types, such as boolean, integer, time, and string. The
following table lists specific constants.

Type Description Example

Boolean
The optional values are TRUE and FALSE (or 1 and 0). 1 indicates
TRUE, and 0 indicates FALSE.

TRUE, FALSE, and 1

Bit type
Similar to the boolean type, the bit type is used only in structures
(number of occupied bits) or function blocks (direct addresses of the
boolean type).

TRUE, FALSE, and 0

-224-

Chapter 4 Programming Basics

Type Description Example

Integer

Integer constants support values in the binary, decimal, octal, and
hexadecimal formats. If an integer value is not in the decimal format,
add the format number and the # symbol before the value. 10 to 15 in
the decimal format are indicated by A to F in the hexadecimal format.

Decimal format: 66

Binary format: 2#101

Octal format: 8#72

Hexadecimal format: 16#3A

Type constants:

INT#22

BYTE#204

Floating
point

Floating point constants are expressed by decimal numbers and
exponents in scientific notation.

7.4

2.3e+9

REAL#3.12

ASCII string

An ASCII string constant is located between two single quotation
marks and can include spaces and special characters. A character is
expressed by a byte. Only ASCII characters are supported. Chinese
characters are not supported. By default, the maximum length is 80
characters. The part exceeding the maximum length is truncated.
The maximum character length can be declared, for example,
str:STRING(35):=’This is a String’. A string function supports up to
255 characters.

Example of $ used as an
escape character:

'$30': 0, character 0, ASCII
character corresponding
to 30 in the hexadecimal
format

$$: $, US dollar character

$’: ’, single quotation mark

Unicode
string

A Unicode string constant is located between two double quotation
marks. A character occupies two bytes. Only Unicode characters
(including Chinese characters) are supported. By default, the
maximum length is 80 characters. The part exceeding the maximum
length is truncated. The maximum character length can be declared,
for example, wstr:WSTRING(35):="This is a WString";.

"Unicode string"

Time
Time constants are generally used by time-related operations and
consist of "T#" (or "t#") and a time value, in the units of days (d),
hours (h), minutes (m), seconds (s), and milliseconds (ms).

t#12h34m15s;

Time Time range within a day; syntax: TOD#time value. TOD#15:36:30.123

Date Starting from January 1, 1970; syntax: d#date. d#2015-02-12

Date and
time

Date constants and time constants are collectively called date and
time constant,

which starts from January 1, 1970; syntax: dt#date.
dt#2004-03-29-11:00:00

NOTE

Constants not of the boolean, bit, and string types are indicated in the format "keyword#constant
value".

Chapter 5 Programming
Language

5.1 Programming Languages Supported by InoProShop ..226

5.2 Structured Text (ST) ..226

5.2.1 Expression ..226

5.2.2 ST Instruction ...227

5.3 Ladder Diagram (LD) ...234

5.3.1 Overview ...234

5.3.2 LD Elements ...235

5.3.3 LD Editor Options ...238

5.3.4 Element Selection ..241

5.3.5 Standard Edit Commands ...243

5.3.6 LD Menu Commands ...246

5.3.7 Single-key Command ..255

5.3.8 Parallel Line Connection ...256

5.3.9 Drag and Drop ..256

5.3.10 Graphic Display Tool ..258

5.3.11 LD Debugging ...260

5.3.12 LD Data Update ..263

-226-

Chapter 5 Programming Language

5 Programming Languages
5.1 Programming Languages Supported by InoProShop

The programming software supports the following six PLC programming languages:

·Ladder diagram (LD)

·Function block diagram (FBD)

·Instruction list (IL)

·Structured text (ST)

·Sequential function chart (SFC)

·Continuous function chart (CFC)
The LD, FBD, ST, IL, and SFC are based on the IEC 61131-3 standard, and CFC is an extension of the IEC
61131-3 standard.

The basic edit methods on the programming interface are applicable regardless of the selected language,
which greatly facilitates programming.

 ■ Common functions of the Windows text editor are supported, such as the copy (Ctrl+C), paste (Ctrl+V),
and delete (Del) shortcut keys.

 ■ The Windows standard Ctrl and Shift keys can be used to select multiple options.

 ■ The function key F2 can be used to start the input assistant. The system provides input tips or options
based on the specific environment.

NOTE

By default, the FBD and IL are not supported for the moment. For details about the SFC and CFC, see
the help document.

5.2 Structured Text (ST)

The ST is a text-based advanced language and similar to PASCAL or C. The program code consists of
instructions comprising keywords and expressions. Different from the IL, the ST can include multiple
statements during a statement cycle, allowing for complex structure development.

Example:

 IF value < 7 THEN

 WHILE value < 8 DO

 value := value +1;

 END_WHILE;

 END_IF;

5.2.1 Expression

An expression is a type of structure. Its calculated value can be used in instructions.

An expression consists of operators and operands. An operand can be a constant, variable, function call,
or expression. Example:

-227-

Chapter 5 Programming Language

 ■ Constant, such as 20, t#20s, and '22231 test'

 ■ Variable, such as iVar and Var1[2,3]

 ■ Function call, with a call return value, such as Fun1(1,2,4)

 ■ Other expressions, such as 10+3, var1 OR var2, (x+y)/z, and iVar1:=iVar2+22

An expression is calculated by calculating the values of operands based on the operator priority. Value
calculation is based on a descending order of operator priorities. Operators with the same priority are
executed from left to right based on their positions in the expression.

For example, A, B, C, and D are of the INT type and their values are 1, 2, 3, and 4, respectively. Then
A+B- C*ABS(D) is equal to -9, and (A+B-C)*ABS(D) is equal to 0.

When an operator has two operands, the value of the left operand is calculated first. For example, in the
expression SIN(A)*COS(B), the values of SIN(A), COS(B), and the product are calculated in sequence.

The following table lists the operators of the ST language.

Operation Symbol Priority

Parentheses (Expression) Highest

Function call Function name (parameter list, separated by commas)

Exponentiation EXPT

Negation value calculation

Complementing

-

NOT

Multiply

Divide

Mod

*

/

MOD

Add

Subtract

+

-

Compare <, >, <=, and >=

Equal to

Not equal to

=

<>

Logical AND AND

Exclusive OR XOR

Logical OR OR Lowest

5.2.2 ST Instruction

The ST program consists of instructions, which are separated by semicolons (;). The instructions consist of
keywords and expressions. The following table lists the ST instructions.

Keyword Description Example

:=, S=, and R= Assign value, set, and reset A:=B; C:=SIN(X); b1 R=cond1;

Function block call and output CMD_TMR(IN := %IX5, PT := 300); A:=CMD_TMR.Q

RETURN Return (exit the current POU) RETURN;

-228-

Chapter 5 Programming Language

-228-

Keyword Description Example

IF Select

D:=B*B;

IF D<0.0 THEN

C:=A;

ELSIF D=0.0 THEN

C:=B;

ELSE

C:=D;

END_IF;

CASE Multiple selection

CASE INT1 OF

1: BOOL1 := TRUE;

2: BOOL2 := TRUE;

ELSE

 BOOL1 := FALSE;

 BOOL2 := FALSE;

END_CASE;

FOR FOR loop

J:=101;

FOR I:=1 TO 100 BY 2 DO

IF ARR[I] = 70 THEN

J:=I;

EXIT;

END_IF;

END_FOR;

WHILE WHILE loop

J:=1;

WHILE J<= 100 AND ARR[J] <> 70 DO

J:=J+2;

END_WHILE;

REPEAT REPEAT loop

J:=-1;

REPEAT

J:=J+2;

UNTIL J= 101 OR ARR[J] = 70

END_REPEAT;

EXIT Exit loop EXIT;

CONTINUE Continue the next execution loop CONTINUE;

JMP Jump
label: i:=i+1;

JMP label;

; Empty statement ;

1 Valuation

A valuation instruction assigns values to variables. In a valuation keyword, the left part is a variable and
the right part is the value to be assigned by the keyword.

Example: Var1 := Var2 * 10;

After execution, the value of Var1 is 10 times that of Var2. Three types of valuation keywords are provided:
":=", "S=", and "R=".

-229-

Chapter 5 Programming Language

-229-

 ■ ":=" indicates general valuation, in which the right-side value is directly assigned to the left- side value
and the two values are equal.

 ■ "S=" indicates set valuation, in which the left-side variable is changed to TRUE (set) if the right-side
value is TRUE, until it is initialized using the R= instruction.

 ■ "R=" indicates reset valuation, in which the left-side variable is changed to FALSE (reset) if the right-
side value is TRUE. It is used to reset the variables set by the S= instruction,

for example, a S= b;.

Once the value of b changes to TRUE, the value of a remains TRUE, even after the value of b changes to
FALSE.

2 Function block call

Syntax: <FB instance name>(FB input variable:=<value and address>|, <more FB input variables:=<value
and address>|...more FB input variables);

In the following example, a delay function block (TON) is called, and the IN and PT parameters are
allocated. The result variable Q is allocated to variable A. Delay FB is instantiated through "TMR:TON".

Syntax:

<FB instance name>, <FB variable>:

TMR(IN := %IX5, PT := 300);

A:=TMR.Q;

3 RETURN instruction

The RETURN instruction indicates exiting the POU when the predefined condition is TRUE.

Syntax:

RETURN;

Example

IF b=TRUE THEN

RETURN;

END_IF;

a:=a+1;

If b is TRUE, the a:=a+1; statement is not executed, and the POU is returned immediately.

4 IF instruction

The IF keyword is used to determine the condition for executing instructions.

Syntax:

IF <boolean expression1> THEN

<IF_instruction>

{ELSIF <boolean expression2> THEN

<ELSIF_instruction1>

ELSIF <boolean expression n> THEN

<ELSIF_instruction-1>

-230-

Chapter 5 Programming Language

ELSE

<ELSE_instruction>}

END_IF;

The content inside {} is optional.

If <boolean expression 1> is TRUE, only <IF_instruction> is executed whereas other instructions are not;
otherwise, the boolean condition expressions starting from <boolean expression 2> are calculated one by
one until the value of an expression is TRUE. Then, the instructions of the expression are executed. If no
expression has the value TRUE, the instruction corresponding to <ELSE_instruction> is executed.

Example

IF temp<17

THEN heating_on := TRUE;

ELSE heating_on := FALSE;

END_IF;

Here, heating starts when the temperature is below 17ºC; otherwise, heating remains disabled.

5 CASE instruction

The CASE instruction lists and processes the instructions corresponding to the multiple values of a
conditional variable. Conditional variables must be integers.

Syntax:

CASE <Var1> OF

<value1>: <Instruction 1>

<value2>: <Instruction 2>

<value3, value4, value5>: <Instruction 3>

<value6 .. value10>: <Instruction4>

...

<value n>: <Instruction n>

ELSE <ELSE Instruction>

END_CASE;

The CASE instruction implements the following processing:

 ■ If the value of the <Var1> variable is <valueI>, <Instruction I> is executed.

 ■ If no value matches with <Var1>, <ELSE Instruction> is executed.

 ■ If the same instruction is executed in multiple variable values, you can write the values one by one
and separate them with commas (,) so that they are executed simultaneously.

 ■ If the same instruction is executed within a variable range, you can write the start and end values and
separate them with two periods (.). The preceding two conditions can be combined.

-231-

Chapter 5 Programming Language

Example

6 FOR loop

You can write a repeated processing logic through FOR loop.

Syntax:

FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>} DO

<instructions>

END_FOR;

The content inside {} is optional.

INT_Var is a counter of the integer type. <Instructions> is executed as long as <INT_Var> is not greater
than <END_VALUE>. Check the condition before executing <Instructions>. <Instructions> is not executed if
<INIT_VALUE> is greater than <END_VALUE>.

<INT_Var> increases by <Step size> each time after <Instructions> is executed. <Step size> can be any
integer. The default value 1 applies if this parameter is not set. Loop stops when <INT_Var> is greater than
<END_VALUE>.

Example

FOR Counter:=1 TO 5 BY 1 DO

Var1:=Var1*2;

END_FOR;

Erg:=Var1;

Assume that the default value of Var1 is 2. The value changes to 32 after FOR loop.

7 WHILE loop

WHILE loop can be used by loop processing. Different from FOR loop, WHILE loop supports loop
conditions of arbitrary boolean expressions. The loop is executed once the loop condition is met;
otherwise, it is exited.

Syntax:

WHILE <boolean expression> DO

<instructions>

END_WHILE;

When <Boolean_expression> is TRUE, <Instructions> is executed, until <Boolean_expression> changes
to FALSE. <Instructions> is never executed if the initial value of <Boolean_expression> is FALSE. If
<Boolean_ expression> is never set to FALSE, <Instructions> is executed without stop. This results in
infinite loop, which is not allowed during programming.

-232-

Chapter 5 Programming Language

Example

WHILE Counter<>0 DO

Var1:= Var1*2;

Counter := Counter-1;

END_WHILE

WHILE loop and REPEAT loop are more powerful than FOR loop because the former do not calculate the
loop times before loop is executed. Therefore, WHILE loop and REPEAT loop are sufficient in some cases.
FOR loop is more efficient when the loop times are known.

8 REPEAT loop

Different from WHILE loop, REPEAT loop checks the loop condition after the loop instruction is executed.
This means the loop is executed at least once, regardless of the loop condition.

Syntax:

REPEAT

<instructions>

UNTIL <Boolean expression>

END_REPEAT;

The execution logic is that <Instructions> is executed until <Boolean expression> is TRUE.
<Instructions> is executed only once if the initial value of <Boolean expression> is TRUE. If the value of
<Boolean_ expression> is never TRUE, <Instructions> is executed permanently, resulting in infinite loop.

Example

REPEAT

Var1:=Var1*2;

Counter:=Counter-1;

UNTIL Counter=0;

END_REPEAT;

9 CONTINUE statement

The CONTINUE instruction is used in FOR, WHILE, and REPEAT loops. It terminates the current loop in
advance and starts the next loop.

Example

FOR Counter:=1 TO 5 BY DO

INT1:=INT1/2;

IF INT1=0 THEN

CONTINUE;

END_JF

Var:=Var1/UBT1L

END_FOR;

Erg:=Var1;

-233-

Chapter 5 Programming Language

10 EXIT statement

The EXIT instruction is used to exit the FOR, WHILE, or REPEAT loop.

11 JMP statement

The JMP instruction is used to jump to the code line marked by the specified label.

Syntax:

<label>:

JMP <label>;

<label> is at the start of the program line. The JMP instruction requires a jump target, that is, a predefined
label. When the JMP instruction is reached, the program jumps to the code line marked by the specified
label for execution.

Example

aaa :=0;

_label11:aaa:=aaa+1;

(*instructions*)

IF (aaa < 10) THEN

JMP _label1;

END_IF;

The initial value of the variable aaa is 0. As long as the value is less than 10, the program jumps to the code
line marked by label 1 for execution. This affects the repeated execution of the program between the JMP
instruction and label.

Such a function can also be implemented by the WHILE or REPEAT loop. Be cautious when using the JMP
instruction because it reduces code readability.

12 Comment

The ST provides two comment write methods.

 ■ "(*"start,"*)"end. This allows for cross-line commenting, for example, "(*This is a comment.*)".

 ■ Single-line commenting, which uses "//" to indicate the start of a comment extending to the end of
the current line, for example, "// This is a comment."

A comment can be inserted into the declaration or implementation part of the ST editor.

Comment nesting: A comment can be inserted into another comment.

Example

(*

a:=inst.out; (*to be checked*)

b:=b+1;

*)

-234-

Chapter 5 Programming Language

5.3 Ladder Diagram (LD)

5.3.1 Overview

The LD is a graphic programming language and similar to the structure of a circuit diagram. The LD
consists of a series of networks (also called segments), and each network starts from the left-side vertical
line (power rail and energy flow line). A network consists of contacts, coils, optional POUs (functions,
function blocks, and programs), jump, labels, and connection lines.

The bus on the left is the energy flow line and is always TRUE. Contacts, operation blocks, and coils are
connected after the bus. Each contact is allocated with a boolean variable. If the variable is set to TRUE,
the switch is turned on and the condition is transferred along the connection line from left to right. If the
variable is not TRUE, the switch is turned off. The coil on the right receives the On or Off signal transmitted
from the left side. TRUE or FALSE is written to the boolean variable associated with the coil. The following
figure shows the LD edit page.

Auto declaring eXception At X8

Broken line before copying FB in front of the loop

NOTE

1: variable definition area; 2: LD programming area; 3: tool box.

The LD contains the following main elements: contact, coil, operation block, branch, and comment. You
can add the elements to the network to form an LD execution logic through the insert, drag and drop,
underline, and copy and paste operations. To set the page font, operands, and comment display of the LD,
choose Tools > Options > FBD/LD editor.

The LD supports online debugging of the monitoring function, written values, mandatory values, and
breakpoints.

Branches are classified into closed and non-closed branches. Closed branches are called parallel
branches, whereas non-closed branches are called branches.

-235-

Chapter 5 Programming Language

5.3.2 LD Elements

The LD elements include network, contact, coil, operation block, execution block, branch, jump, label,
and return.

The input and output of contacts, coils, and operation blocks are related to operands, which can be
variables, constants (TRUE or FALSE; 1 or 2), and addresses. For details, see the variable definition.

The LD elements are displayed under ToolBox (choose View > ToolBox), as shown in Figure 5-1. The
toolbox includes general elements, LD elements, IEC standard operators (such as boolean operators and
match operators), function blocks, and POU defined in the current program.

Figure 5-1 LD toolbox

-236-

Chapter 5 Programming Language

1 Network

Icon -

The LD consists of a series of networks. All the other LD elements are within networks. Each network is
indicated by a serial number on the left.

You can insert a network title (summary about the network) and comment (detailed description about
the network). Choose Tools > Options > FBD/LD editor > General to show or hide the network title and
comment.

You can insert a label below the network title and comment to indicate the jump target.

Use the menu command Toogle network comment state to enable or disable the network.

The network decoration area between the network serial number and network content displays the
breakpoint mark and bookmark position.

2 Contact

Icon -

Contacts are classified into normally open (NO) and normally closed (NC) contacts. Contacts are boolean
variables and used to transfer ON (TRUE) and OFF (FALSE) values. If the variable value is TRUE, the NO
contact transfers ON (TRUE) to the right; otherwise, it transfers OFF (FALSE). The NC contact transfers
reverse values.

You can add the edge signal function to contacts. Right-click a contact and choose Edge Detect from the
context menu to change the contact to a rising-edge trigger contact or a falling-edge trigger contact. The
rising-edge trigger contact transfers ON to the right when the variable value of the contact changes from
FALSE to TRUE. The falling-edge trigger contact transfers ON to the right when the variable value of the
contact changes from TRUE to FALSE.

3 Coil

Icon -

Coils are located at the end of the network. The logical operation results on the left are assigned to coil
variables. Coil variables are only of the boolean type. TRUE indicates ON and FALSE indicates OFF. Parallel
coils can only be inserted upward or downward.

Coils are classified into coils, negated coils, set coils, and reset coils. You can switch between the four coil
types by using the right-click menu command or shortcut.

 ■ Coil: assigns the logical operation results on the left to coil variables directly.

 ■ Negated coil: negates the logical operation results on the left and assigns the values to coil variables.

 ■ Set coil: sets the value of the coil variable to ON (TRUE) if the left-side status value of the coil is ON
(TRUE), and keeps the value until the variable is reset to OFF (FALSE) by the reset coil.

 ■ Reset coil: resets the set coil.

-237-

Chapter 5 Programming Language

4 Box (operation block)

Icon -

An operation block can be an operator, function, function block, program, action, or method. If the
operation block is of the function block type, a text box is displayed above the operation block box to
display the function block instance.

An operation block includes at least one input and one output. The following figure shows the
components of an operation block.

Operation blocks are classified into common operation blocks and EN/ENO operation blocks.

 ■ EN/ENO operation block: contains EN input and ENO output, in addition to the input and output
provided by an operation block. The execution logic of the EN/ENO operation block is as follows: The
operation block logic is executed when EN is TRUE. ENO is TRUE after execution. The operation block
is not executed if EN is FALSE. In this case, ENO is FALSE. Note: The input line of the EN/ENO operation
bock can only be connected to the EN pin, and the output line can only be connected to the ENO pin.

 ■ Input and output pins of the operation block: The negation, rising edge, and falling edge signals can
be added to the input pin of the boolean type. The negation signal can be added to the output pin of
the operation block.

 ■ Multi-input line operation block: The operation block contains multiple inputs that are connected to
the energy flow line. Figure 5-2 shows an operation block with two input lines. Because a multi-input
line operation block provides multiple lines connected to the energy flow line, it is only located in the
first branch and cannot be connected to branches in parallel.

Figure 5-2 Multi-input line operation block

5 Execute (execution block)

Icon -

An execution block can be inserted into the embedded ST. ST statements can be edited within the block.
The execution block can be zoomed in or out. The maximum size is 1000*400.

6 Branch

Icon -

Branches form a non-closed parallel logic.

7 Label

Icon -

-238-

Chapter 5 Programming Language

A label indicates a jump location and is at the head of the network. The system jumps to the label position
through jump elements. A jump label is a string and must comply with the naming conventions.

8 Jump

Icon -

When the input on the left of a jump element is TRUE, the system jumps to the specified label position for
execution. The jump element is on the rightmost of the network.

9 Return

Icon -

When the input on the left of the return element is TRUE, the current program exits execution
immediately. The return element is on the leftmost of the network.

5.3.3 LD Editor Options

The LD editor options are used to control the LD screen display, single-key command setting, and print
display mode. Access the LD editor options by choosing Tools > Options > FBD/LD editor. The LD editor
provides three tabs: General, LD, and Print.

1 General setting

The following figure shows the General tab page.

General tab page of the LD editor

View

 ■ Show network title: If this option is selected, you can insert and edit the title of each network of
the LD. The inserted title is displayed above the current network. If no title exists, the title line is not
displayed. A title is inserted by using a menu command.

 ■ Show network comment: If this option is selected, you can edit the comment of each network of the
LD. If a network comment is added, it is displayed below the network title. If no network comment
exists, the comment line is not displayed. A network comment is edited by using a menu command.

 ■ Show box icon: If this option is selected, the icon defined for the operation block is displayed in the
middle of the block. Icons are defined for standard operands (such as ADD and SUB) and function
blocks (such as TON and TOF). To add images as operation block icons to user-defined functions,

-239-

Chapter 5 Programming Language

function blocks, or programs, right-click an object and choose Properties > Bitmap > Click to select
project- related bitmap.

 ■ Show operand comment: If this option is selected, you can edit and display the comment of each
operand on the LD page. An operand is a programming concept. Variables, constants, and addresses
are operands. Because the LD does not necessarily use variables, when constants or addresses are
used, you can describe them by using operand comments. When editing an operand comment, select
an operand string and right-click it.

 ■ Show symbol comment: If this option is selected, the comments during variable declaration are
displayed for the variables on the LD page. Variable comments come from variable declaration and
cannot be edited.

Font

Click the sample text. The font selection box is displayed, where you can set the font of the LD. The
default font is Microsoft YaHei and the default font size is 9. The font range mainly covers operands and
comments. The execution block font uses the text editor font (ST text and variable declaration text).

Behavior

 ■ Placeholder for new operands: not implemented.

 ■ Empty operands for function block pins: If this option is selected, the input and output pins of a
new operation block use empty characters. If this option is not selected, the input and output pins of
the operation block use "???".

Operand Fixed Size Settings

If this option is selected, you can set Operand width, Operand comment height, and Symbol comment
height. See the following figure.

Operand Fixed Size Settings

 ■ Operand width: Set the number of fixed characters of an operand. The default value is 15.

 ■ Operand comment height: Set the number of operand comment lines of fixed length. The default
value is 1.

 ■ Symbol comment height: Set the number of variable comment lines of fixed length. The default
value is 1.

-240-

Chapter 5 Programming Language

2 LD setting

The following figure shows the LD tab page.

Single key settings

The single key settings function enables the edit operation through a single key, including single keys
executed on lines and those executed on elements. The single-key commands executed on lines insert
serial elements, whereas the single-key commands executed on elements insert parallel elements.

You can switch element functions when selecting elements, such as negation switching, edge signal
switching, and set/reset switching. Negation switching is applied to contacts and coils and uses the / key.
Edge signal switching is applied to contacts and uses space. Set/Reset switching is applied to coils and
uses space.

You can set a single key for implementing a function. Each function has a default single-key character. You
can set keys as needed.

NOTE

The same key cannot be used repeatedly under Commands on Line or Commands on Element, but
Commands on Line and Commands on Element may share the same key.

3 Print

The following figure shows the Print tab page.

-241-

Chapter 5 Programming Language

Layout options

Fit method:

 ■ Poster: Print based on the normal proportion. If the current page is not high enough to display the
entire network, the next page is printed. If the page is wide enough to display the entire network, the
remaining part is printed on the next page.

 ■ Shrink to fit the widest network: The displayed content is compressed during printing so that all
the networks are displayed within the width of the page. If a page is not high enough to display the
entire network, the remaining part of the network is displayed on the next page.

 ■ Avoid cutting of elements: If this option is selected, when an element is displayed between two
pages, the element is placed on the next page for display. This option is available only when Poster is
selected for Fit method.

 ■ Mark connections on adjacent pages: If this option is selected, the connection between two pages
is marked. This option is available only when Avoid cutting of elements is selected.

5.3.4 Element Selection

Selection is the basis of the edit operation. You can select elements or lines, select one object at a time or
select multiple objects simultaneously by pressing Ctrl or Shift, and select consecutive or nonconsecutive
objects.

A selected element is highlighted. For example, a selected contact is displayed as . The external
dotted box indicates that the contact is focused. You can select an element and paste it to another
element in parallel mode, or drag and drop it to another element in serial or parallel mode. Because
multiple selected elements may not be consecutive, you need to describe the result logic formed by the
selected elements. The selection result logic is intended to keep the original logic consistent. You can
select an element through box select, and select multiple or all elements by pressing Ctrl or Shift.

1 Result logic formed by selected elements

 ■ Single-element selection: When you select a contact or coil, only the selected contact or coil is
included. When you select an operation block, the operation block and the line-free input and output
operands are included. As shown in the following figure, when the ADD operation block is selected,
the ADD operation block, inputs a and b, and output c are pasted.

 ■ Multi-element selection: Select the serial connection on a line (including nonconsecutive selection)
and select elements on a parallel line (including nonconsecutive selection) to form parallel results.

-242-

Chapter 5 Programming Language

Parallel logic formation

 ■ For multi-element selection: If the selected elements span multiple branches, the results also span
branches, and the original logic remains unchanged. If the selected elements span two branches, the
elements are connected serially.

The results span multiple branches if the selected elements come from more than two branches.

If the selected elements come from two branches, the results of the two branches are connected serially.

 ■ For multi-element selection: If you select the multi-input line operation block and the elements on
multiple input lines, the results are the same as the selected ones. If you only select the elements
on multiple input lines but do not select the operation block, the elements on the input lines are
connected in parallel to form results.

If you select the operation block and input elements, the results are the same as the selected ones.

If you only select input elements but do not select the operation block, a parallel logic is formed.

-243-

Chapter 5 Programming Language

2 Box select

The elements within the rectangle that starts from where the mouse is pressed and ends where the mouse
is released, are selected. See the following figure.

NOTE

Box select is only applicable to single network selection. Selection starts from the blank area where
the mouse is pressed.

3 Multi-element selection through Ctrl and Shift

Multi-element selection through Ctrl and Shift complies with the standard multi-element selection
method.

 ■ When you press Ctrl, if the current element is not selected, it is added to the selection list. If the
current element is already selected, it is removed from the selection list.

 ■ Press Shift to select elements within the rectangle from the last selected element to the currently
selected element.

4 Select all

Press Ctrl+A to select all networks.

5.3.5 Standard Edit Commands

The LD supports standard and common edit operations, such as copy, paste, delete, cut, undo, and
restore. Standard edit shortcut keys are used.

1 Copy

Copies the selected element. The copy result is the selected element. For details, see the section about
element selection.

The following elements of the LD can be copied: network, contact, coil, operation block, string, and
branch line.

The copied elements may be consecutive or not, depending on the selection. The elements to be copied
must be within a single network. If elements across networks are selected, only the data selected in the
focused network is copied.

2 Paste

Pastes the copied elements. The paste rules are as follows:

 ■ Paste on line

When "paste on line" is selected, the copied element is inserted in the line position to form a serial
relationship.

-244-

Chapter 5 Programming Language

 ■ Paste on element

When "paste on element" is selected, the elements selected in batches form a parallel relationship.
When a parallel relationship is formed, the selected elements must meet the parallel conditions
for the paste operation. That is, the selected elements must be on the same line and consecutive
and cannot span branches, and the start element and end element cannot connect to the branch
internally and externally in parallel.

 ■ Paste in coil position

Because no elements exist on the right of a coil, special paste rules must be observed. The rules for
jump elements and return elements are the same as those for coils. Coil is used as an example.

1) If a coil is selected (parallel element connection is selected), the pasted elements are located in a new
branch below the coil, as shown in the following figure. Select Y5 to paste S0 and Y6. S0 and Y6 are
located in a new branch below the Y5 coil.

2) If a line before the coil is selected (serial line connection is selected), the copied content may include
only one branch or multiple branches, depending on the copied elements.

Only one branch in the copied content

1) If the copied content does not include the coil, the copied elements are connected to the coil serially.

2) If the copied content includes the coil, the data before the copied coil is inserted in the line
selection position, and the copied coil and the coil after the selection line form a non-closed parallel
connection, as shown in the following figure. Select the connection line before Y5 to paste S0, Y6,
and Y8. After pasting, S0 and Y6 before Y8 are serially connected to the line before Y5. Y8 and Y5 are
connected in parallel through a branch.

-245-

Chapter 5 Programming Language

Multiple branches in the copied content

1) If the last branch horizontal to the copied content does not include the coil, the copied content is
inserted in the line selection position.

2) If the last branch horizontal to the copied content includes a coil, connect this branch to the coil
after the connection line in parallel mode, and keep other data connected in serial or parallel mode
unchanged, as shown in the following figure. Paste the copied X1, Y0, and X2 to the connection line
before the Y1 coil. Y0 is located below the Y1 coil, and X1 is located on the connection line before Y1.

 ■ Paste multi-input line operation block

The multi-input line operation block is only located in the non-parallel position of the first branch,
that is, the paste position. If the multi-input line operation block is not included, the connection
elements of the copied operation block starting from the second input line are deleted, as shown
in the following figure. The X0 and X1 contacts of the copied operation block are copied, and X1 is
deleted when being pasted.

 ■ Paste network

You can select one or more networks for the copy and paste operations. Selection is required in
advance.

 ■ Paste a single branch line

This function is used to add a single branch. It is the same as the function of inserting a branch
upward or downward. You can copy a single branch line and paste it in the branch output position.
The branch line is pasted below the selected branch, as shown in the following figure.

-246-

Chapter 5 Programming Language

3 Delete

Deletes the selected element. After the current element is deleted, the next element is selected to ensure
operation continuity.

4 Cut

Copies the selected element, pastes it, and deletes it.

5 Undo/Restore

Undo: returns to the previous edit status and restores the previously selected element.

Restore: restores the next edit status and the next selected element.

5.3.6 LD Menu Commands

Menu commands include the right-click menu commands and the LD commands in the LD toolbox.

1 Insert network

The "insert network" and "insert network (below)" menu commands are provided.

Command execution condition: A network is selected and another network is inserted above or below the
selected network.

Insert network: icon - ; shortcut key: Ctrl+I, which inserts an empty network above the selected
network.

Insert network (below): icon - ; shortcut key: Ctrl+T, which inserts an empty network below the
selected network.

2 Switch network comment status

Icon - ; shortcut key: Ctrl+O, which switches a network between the comment state and non-comment
state.

In the comment state, the code of the entire network is invalid and not executed, and the execution block
cannot be edited.

Command execution condition: A network is selected.

3 Insert network header information

A network header mainly includes the network title, network comment, and label.

The commands for inserting a network header include "insert label", "edit network title", and "edit
network comment".

-247-

Chapter 5 Programming Language

 ■ Edit network title: icon - , which edits the title of the selected network.

 ■ Command execution condition: A network is selected and Show network title is selected.

 ■ Edit network comment: icon - , which edits the comment of the selected network.

 ■ Command execution condition: A network is selected and Show network comment is selected.

 ■ Insert label: icon - , which inserts a jump label to the selected network to indicate the jump
position of a jump element.

 ■ Command execution condition: A network is selected.

4 Insert operation block

The following five menu commands are provided: insert operation block, insert empty operation block,
insert EN/ENO operation block, insert EN/ENO empty function block, and insert parallel operation block
(below). The commands are used to insert operators, functions, function blocks, and programs. You can
also drag and drop the operation block or EN/ENO operation block from the toolbox to insert an operation
block.

The first four commands are used to insert serial operation blocks, and the last command is used to insert
operation blocks parallel to selected elements.

Insertion position:

1) Select a horizontal line and insert an operation block on the horizontal line.

2) Select a vertical line (parallel brackets). For the left bracket, insert the operation block on the left line
of the bracket. For the right bracket, insert the operation block on the right line of the bracket.

3) Select an element and insert an operation block to the left of the element.

 ■ Insert operation block: icon - ; shortcut key: Ctrl+B, which displays the input assistant for you to
select the operation block to be inserted.

 ■ Insert empty operation block: icon - ; shortcut key: Ctrl+Shift+B, which inserts an empty
operation block, without using the input assistant. You can specify the operation block type in the
corresponding location.

 ■ Insert EN/ENO operation block: icon - ; shortcut key: Ctrl+Shift+E, which displays the input
assistant for you to select the operation block to be inserted. The operation block provides EN/ENO
input and output. The EN/ENO operation block is executed only when EN is TRUE. It is not executed
when EN is FALSE. ENO has the same result as EN.

 ■ Insert EN/ENO function block: inserts an empty operation block, without using the input assistant.
The operation block provides EN/ENO input and output.

 ■ Insert parallel operation block (below): inserts an empty operation block below the selected element.
The selected element can be a contact or operation block.

5 Insert execution block

Insert execution block: icon - , which inserts a serial execution block in the selected location. You can
also drag and drop an execution block from the toolbox.

Insertion position:

1) Select a horizontal line and insert an execution block on the horizontal line.

2) Select a vertical line (parallel brackets). For the left bracket, insert the execution block on the left of
the bracket. For the right bracket, insert the execution block on the right of the bracket.

3) Select an element and insert an execution block to the left of the element.

-248-

Chapter 5 Programming Language

An execution block can be used to edit ST statements. Click the text area for editing. The execution block
only provides EN/ENO input and output.

Drag to change execution block size: Drag the execution block frame in the editable state to control the
block size, as shown in the following figure.

6 Insert input

Insert input: icon - ; shortcut key: Ctrl+Q, which adds input to an variable-input operation block.

Variable-input operation blocks: ADD, +, MUL, *, SEL, AND, &, OR, |, XOR, MAX, MIN, and MUX

Insertion position: When an input pin is selected, an input is added before the input pin. When an
operation block is selected, the added input pin is located at the end.

7 Insert coil

Three menu commands are provided: insert coil, insert set coil, and insert reset coil. You can also insert
coils by dragging and dropping Coil, Set coil, and Reset coil from the toolbox.

 ■ Command execution condition: The selected position cannot be located on the parallel branch or in
the input position of the multi-input line operation block.

 ■ Insert coil: icon ; shortcut key: Ctrl+Shift+A, which outputs a coil in the current position.

 ■ Insertion position:

1) Select a horizontal line and insert a coil on the line. The coil and line are processed by a non-closed
branch.

2) Select a vertical line (parallel brackets). For the left bracket, insert the execution block on the left of
the bracket. For the right bracket, insert the execution block on the right of the bracket.

-249-

Chapter 5 Programming Language

3) If Network is selected, the new coil is inserted at the end.

4) If Coil, Return, or Jump is selected, the new coil is inserted below the selected element.

The default variable name of the inserted coil is "???". You need to enter the required variable or constant.
You can use the input assistant (press F2) to select an input from the variable list.

 ■ Insert set coil: icon - , which inserts a set coil in the current position. The operation is the same as
inserting a coil.

 ■ Insert reset coil: icon - - , which inserts a reset coil in the current position. The operation is the
same as inserting a coil.

8 Insert contact

The following four menu commands are provided: insert contact, insert NC contact, insert parallel lower
contact, and insert parallel upper contact. You can also insert a contact by dragging and dropping Contact
or Negated contact from the toolbox.

 ■ Insert contact: icon - ; shortcut key: Ctrl+K, which inserts an NO contact in the current position in
serial mode.

Insertion position:

1) Select a horizontal line and insert a contact on the horizontal line.

2) Select a vertical line (parallel brackets). For the left bracket, insert the execution block on the left of
the bracket. For the right bracket, insert the execution block on the right of the bracket.

3) If a network is selected, the new contact is inserted at the end.

4) If an element is selected, the new contact is inserted on the left of the element.

-250-

Chapter 5 Programming Language

The default variable name of the contact is "???". Click the variable or constant required by text input. You
can use the input assistant (press F2) to select an input from the variable list.

 ■ Insert NC contact: icon - , which inserts an NC contact in the current position in serial mode. The
operation is the same as inserting a contact.

 ■ Insert parallel lower contact: icon - ; shortcut key: Ctrl+R, which inserts an NO contact below the
selected element in parallel mode. The selected element can be a contact or operation block.

 ■ Insert parallel upper contact: icon - ; shortcut key: Ctrl+P, which inserts an NO contact above the
selected element in parallel mode. The operation is the same as inserting a parallel lower contact.

9 Insert branch

Three menu commands are provided: insert branch, insert branch above, and insert branch below. You
can also insert branches by dragging and dropping Branch from the toolbox. A branch is a non-closed line
and different from a parallel branch.

 ■ Insert branch: icon - ; shortcut key: Ctrl+Shift+V, which inserts a branch in the selected line
position.

 ■ Command execution condition: The selected position cannot be located on the parallel branch or in
the input position of the multi-input line operation block.

 ■ Insertion position:

1) If a line is selected, the branch is inserted below the line.

2) If a contact or coil is selected, the branch is inserted before the selected element.

3) If the left bracket is selected, the branch is inserted on the left of the bracket. If the right bracket is
selected, the branch is inserted on the right of the bracket.

As shown in the following figure, each selected position indicates a branch.

Figure 5-3 Branch label

 ■ Insert branch below: icon - , which adds a branch below the selected branch.

 ■ Command execution condition: A branch line is selected.

 ■ Insert branch above: icon - , which adds a branch above the selected branch. This command is
executed only when a branch line is selected.

 ■ Command execution condition: A branch line is selected.

-251-

Chapter 5 Programming Language

10 Jump and return

Two menu commands are provided: insert jump and insert return. Jump and Return are used to control
the program execution sequence. In normal cases, programs are executed from top down and from left to
right based on the network sequence. To add a jump or return element, drag and drop Jump or Return
from the toolbox.

Like coils, the jump and return elements must be located on the rightmost side. Therefore, the rules for
inserting jump and return elements are the same as those for inserting coils. For details, see the "insert
coil" command.

 ■ Insert jump: icon - ; shortcut key: Ctrl+L, which inserts a jump element to jump to the specified
label position.

The jump position is marked by a label in the network. That is, jump across networks is supported.
Jump is executed only when the pre-jump input condition is met.

 ■ Insert return: icon - , which inserts a return element. When the input condition is met, the current
POU executes return and returns results to the caller POU.

11 Negate

Icon - ; shortcut key: Ctrl+N, which negates the operation block input, operation block output, jump
condition, return condition, contact value, or coil.

The negate command can be executed in the following two positions:

1) Element negation: The main elements are contact and coil. A slash (/) is added to the contact and coil
after negation.

2) Line negation: The main elements are operation block input line, operation block output line, coil
input line, jump input line, and return input line. A circle is added on the line.

Figure 5-4 shows the negation position.

Figure 5-4 Negate operation
The negation status is switched back when the negate command is executed again.

-252-

Chapter 5 Programming Language

12 Detect edge

Icon - ; shortcut key: Ctrl+E, which adds the edge trigger function to contacts, operation block input
lines, coil input lines, jump element input lines, and return element input lines.

Rising edge detection is equivalent to the R_TRIG function block, and falling edge detection is equivalent
to the F_TRIG function block.

The edge detection command can be executed in the following two positions:

1) Contact edge detection: Select a contact to run the edge detection command. The edge detection
function is added to the contact. indicates the rising edge, and indicates the falling edge.

2) Add edge detection to line: The edge detection command of the execution block is applicable to the
operation block input line, coil input line, jump element input line, and return element input line. The
edge signal symbol is added to the line. The rising edge detection symbol is , and the falling edge
detection symbol is . The edge detection function is added only to input lines of the boolean type.

13 Set and reset

Icon - ; shortcut key: Ctrl+M, which adds the set or reset output function. Set output is displayed as S,
and reset output is displayed as R. The command can be executed multiple times and switches among
set, reset, and normal output.

The set and reset commands can be executed in the following two positions:

1) Coil selection. This command sets or resets a coil. Set coil: . Reset coil:

2) Select the boolean-type output line (non-main output) of the operation block and configure the set
or reset function, as shown in the following figure.

14 Set output connection

Icon - ; shortcut key: Ctrl+W, which modifies the pin of the main output when the operation block
contains multiple outputs. An operation block has only one main output, which is linked to subsequent
elements. See Figure 5-5.

Select the output pin to be modified and run this command to modify the output connection.

Figure 5-5 Output connection modification

-253-

Chapter 5 Programming Language

15 Modify the input and output pin display

The following two menu commands are provided: update parameter and delete unused FB call parameter.

Update parameter: icon - ; shortcut key: Ctrl+U, which updates the input and output parameters of
the selected operation block. When the input or output parameters of the operation block are changed,
run the "update parameter" command to update the parameters.

Delete unused FB call parameter: icon - , which deletes the input and output pins of the unused
operation block. That is, when the input or output of the operation block is "???" or empty, the input or
output is not displayed.

16 Convert to LD language

Display as LD logic: shortcut key Ctrl+2. Convert FBD/IL to LD language: Because FBD and IL are no longer
supported, use this command to convert FBD and IL in the LD language for old projects.

17 Jump to network

Jump to ...: jumps to the specified network. Specify the target network number in the Network number
(1-2) or label: text box.

18 Edit operand comment

Edit operand comment: edits the comment of the selected operand.

Command execution conditions:

 ■ FBD/LD is selected, and Show operand comment is selected.

 ■ An operand string is selected.

Operand is a logical concept. Input variables, constants, and addresses are operands. Examples are
operation block input variable, contact association variable, coil association variable, and operation block
instance.

Select an operand string and run this command. The Edit Comment dialog box is displayed, as shown in
the following figure. Edit the operand comment.

-254-

Chapter 5 Programming Language

19 Switch parallel mode

Toggle Parallel Mode: switches the parallel mode of a parallel branch. The parallel mode is divided into
the sequential parallel branch and the short-circuit-type parallel branch.

 ■ The sequential parallel bracket uses a single line. The output of a single branch is subjected to the
OR operation to obtain the branch output result, as shown in the following figure. Branch results are
obtained through OR.

 ■ The short-circuit-type bracket uses double line. The branch output result must consider whether each
branch includes a non-operation block.

The branch of the non-operation block is used as a condition. If a result of the branch is True, the branch
with an operation block is not executed. It can be considered as an operation block of the contact short
circuit type. As shown in the following figure, the first Move branch instruction is executed only when the
results of the X1 and X2 branches are not TRUE.

The branch of the non-operation block must meet the following conditions:

1) The branch only includes a contact or operator block.

2) The contact does not include the edge signal.

3) The operator block is not of the EN/ENO type, and its input line does not contain the negation or edge
signal.

NOTE

Branches of the short circuit type are not recommended for use considering the branch complexity.

-255-

Chapter 5 Programming Language

5.3.7 Single-key Command

A single-key command enables fast editing by using a single-character shortcut key. The single-key
command can be executed on a line or an element. Run a single-key command on a line to insert a serial
element. A single-key command on an element is used to insert parallel elements or switch the element
function.

To set a character for each command, choose Options > FBD/LD > LD.

Single-key commands on lines

 ■ Insert contact: The default single key is C.

 ■ Insert NC contact: The default single key is /.

 ■ Insert coil: The default single key is Q.

 ■ Insert reset coil: The default single key is R.

 ■ Insert set coil: The default single key is S.

 ■ Insert empty operation block: The default single key is F.

 ■ Insert empty EN/ENO operation block: The default single key is E.

Single-key commands on elements

 ■ Insert parallel contact: The default single key is C. The selected element can be a contact or operation
block.

 ■ Insert empty parallel operation block: The default single key is F. The selected element can be a
contact or operation block.

 ■ Insert empty parallel EN/ENO operation block: The default single key is E. The selected element can
be a contact or operation block.

 ■ Insert coil: The default single key is Q. The selected element can be a coil, return element, or jump
element.

 ■ Switch element negation: The default single key is /. Select a contact to switch between NO and NC.
Select a coil to switch negation.

 ■ Switch element set/reset/edge signal: The default single key is space. Select a contact to switch
among the rising edge signal, falling edge signal, and normal signal. Select a coil to switch among set,
reset, and normal coil.

-256-

Chapter 5 Programming Language

5.3.8 Parallel Line Connection

Select a line as the starting line and draw a line from the selected line to another line. Then, insert parallel
contacts between the two lines. See the following figure.

 ■ The starting point and end point must meet the conditions of parallel connection. That is, the starting
point and end point cannot span the inside and outside of the parallel branch, cannot span branches,
and cannot span from the input to the output of the multi-line operation block.

 ■ Horizontal lines and parallel branch brackets can be connected in parallel by drawing lines. The
premise is that lines are available for selection.

 ■ You can drag the input and output pins of an operation block to exchange their positions. Therefore,
the pin dragging area is close to the line drawing area (about 11 pixels) of the operation block pins.
Lines cannot be drawn.

5.3.9 Drag and Drop

The LD supports the drag and drop operation on elements. You can drag the elements in the toolbox and
drop them onto the network, and drag and drop elements on the LD interface or across interfaces.

When you drag and drop an element, the LD interface displays the available positions. The available
positions are displayed in the following three modes:

 ■ Diamond : You can drag and drop an element onto the current position and insert it in serial mode
(①).

 ■ Upper and lower triangles : You can insert a parallel element above or below the current element.

 ■ Upper and lower arrows : You can add a network in the upward or downward direction.

When you drag and drop an element onto the insertion position, each figure changes to green inside, for
example, , indicating the insertion position (②).

The following figure shows the drag and drop process.

-257-

Chapter 5 Programming Language

1 - Drag position. The triangle indicates the direction of parallel insretion, and the diamond indicates serial connection;
2 - After dragging, the color changes to green to indicate the insertion position

1 Drag and drop elements from the toolbox

You can drag and drop elements from the toolbox to the LD editor.

The toolbox provides general elements, LD elements, common boolean operators, math operators, other
common operators, common function blocks, and POUs.

General elements and LD elements are frequently used elements, including network, operation block,
execution block, contact, coil, and branch.

Boolean operators mainly include the AND and OR operators.

Math operators mainly include the frequently used ADD, SUB, MUL, DIV, GE, EQ, LE, and LT.

Other operators include either-or, choose-one, type conversion, and valuation.

Function blocks include the frequently used TON, TOF, R_TRIG, F_TRIG, and RS.

POUs include the programs, function blocks, functions, methods, and actions defined in the current
project. A maximum of 200 POUs can be displayed. If this limit is exceeded, POUs are not displayed, to
avoid content disorder.

When you drag and drop elements, the available positions are displayed. Observe the following rules:

 ■ You can drag and drop contacts onto contacts and operation blocks (including execution blocks) for
parallel connection, and onto lines for serial connection.

 ■ You can drag and drop operation blocks onto contacts and operation blocks (including execution
blocks) for parallel connection, and onto lines for serial connection.

 ■ You can drag and drop coils onto non-parallel branches and input lines of non-multi-line operation
blocks for serial connection. You can also drag and drop coils above or below other coils, return
elements, and jump elements.

-258-

Chapter 5 Programming Language

2 Drag and drop elements on the edit page

On the LD interface, you can drag and drop the selected element from one position to another. You can
drag and drop elements within the current edit page or onto another LD edit page.

You can select one or more elements for the drag and drop operation. For details, see the section about
element selection.

The drag and drop operation is divided into normal drag and drop and copy-type drag and drop (press
Ctrl for drag and drop). During normal drag and drop, after the selected element is dragged and dropped,
it is deleted from the original position. During copy-type drag and drop, after the selected element is
dragged and dropped, it is still retained in the original position.

The drag and drop function is implemented in the standard manner.

The drag and drop rules for one or more selected elements are the same as those of the paste operation
by the standard edit command.

5.3.10 Graphic Display Tool

The LD graphic display tools are used to control the LD display mode, including the selection tool, drag
and drop tool, magnifier tool, and zooming tool. By default, the LD adopts the selection tool. The graphic
display tools are displayed in the lower-right corner of the LD interface, as shown in the following figure.

 ■ Selection tool

The selection tool is the default displayed tool. In selection tool mode, the cursor is displayed as .
You can select elements for editing.

 ■ Drag and drop tool

In drag and drop tool mode, the cursor is displayed as . You can perform the drag and drop
operation in areas.

 ■ Magnifier tool

In magnifier tool mode, the cursor is displayed as . Content is magnified with the cursor at the
center. See the following figure.

-259-

Chapter 5 Programming Language

 ■ Zooming tool

The zooming tool displays the zoom ratio of the current interface and allows you to set the zoom
ratio, as shown in the following figure.

Click ... The Zoom Scale dialog box is displayed. Enter a zoom ratio, as shown in the following figure.

-260-

Chapter 5 Programming Language

5.3.11 LD Debugging

The LD provides powerful debugging functions. In addition to the existing monitoring table, the LD also
provides online monitoring, operand writing, mandatory value writing, breakpoint, and single step
debugging.

1 Monitoring

In online mode, the LD interface displays the execution results of lines, elements, and operand variables
in specific forms. See the following figure.

 ■ Line monitoring

1) Boolean lines are displayed in blue in the bold form in the conducting state (the value is TRUE);
otherwise, they are displayed in black in the bold form.

2) Non-boolean lines (operation block input, output integer variable, time-type variable, and
floating- point variable) are displayed as fine lines. When the value is 0, they are displayed as black
fine lines. When the value is not 0, they are displayed as blue fine lines.

 ■ Element monitoring

1) When the contact is conducted, the NO contact is displayed as , or the NC contact is displayed
as . When the contact is not conducted, the NO contact is displayed as , or the NC contact is
displayed as .

2) When the coil is conducted, the normal coil is displayed as , or the negated coil is displayed
as . When the coil is not conducted, the normal coil is displayed as , or the negated coil is
displayed as .

3) The logic of the EN/ENO operation block is executed only when EN is TRUE. To allow you to
understand the execution status of the EN/ENO operation block (whether it is enabled), we
differentiate the text of the operation block type. If the operation block is executed (EN is TRUE), the
operation block type is displayed in black text. If the operation block is not executed, the operation
block type is displayed in gray text (the block is disabled), as shown in the following figure.

Figure 5-6 Operation block executed Operation block not executed

-261-

Chapter 5 Programming Language

 ■ Variable monitoring

1) Monitored variables are displayed in different widths, depending on the specific type, to reduce space
usage. For variable-length elements such as strings and enumerated elements (the enumeration
name is displayed), the default length is 12 characters. If the displayed content is incomplete, ... is
displayed, and the complete content is displayed in a prompt. For fixed-length elements such as
integers and floating point numbers, content is displayed based on the maximum length.

2) You can drag and drop monitored variables to the monitored variable list.

3) To change the variable display mode, choose Debug > Display Mode.

NOTE

Functions and methods are executed instantly, resulting in only temporary data. Therefore, functions
and methods cannot be monitored directly after login. To monitor functions and methods, you need
to add breakpoints to the functions and methods to interrupt execution before monitoring, as shown
in the following figure.

2 Mandatory value writing

You can write preparatory values to contacts, coils, and variables of the LD. Then, run the "write value"
or "enforce value" command in the Debug menu to write or enforce values to variables. Before writing or
enforcing values, you need to write preparatory values, as shown in the following figure.

 ■ For contacts, coils, and boolean variables, double-click the element or variable value position to
switch between the TRUE and FALSE preparatory values. For example, you can double-click in the
middle of a contact or coil to switch the preparatory value.

 ■ Double-click the value position of a non-boolean variable. The Prepare Value dialog box is displayed.
Enter a preparatory value, as shown in the following figure.

-262-

Chapter 5 Programming Language

Expression (x):

Type (T):

Current (C):

Expected for:

Prepare new value for next Write or Force operation (P):

Delete the prepared value (p).

Remove force without modifying value (R).

Remove force and restore to the value unforced(R).

OK Cancel

Prepare Value

 ■ After a mandatory value is written, the label is added before the value to indicate it is a mandatory
value.

 ■ To release a mandatory value, choose Online > Release value.

3 Breakpoint

The LD supports the breakpoint function. After a breakpoint is added, program execution automatically
stops at the breakpoint, and you can debug the program. Operations such as jump in, skip, jump out, and
run to cursor are supported.

After a breakpoint is added, the breakpoint position (element) is marked by a rectangular box in light red.
When program execution reaches the breakpoint, the breakpoint position is marked by a rectangular box
in yellow. If a breakpoint exists in the network, a circle is displayed in the network decoration area, as
shown in the following figure.

-263-

Chapter 5 Programming Language

The LD is graphical and a breakpoint can be added only in a position with a logical statement. Logical
statements exist only in limited areas of the LD for optimized performance. That is, breakpoints can
be added only in limited areas. For example, breakpoints cannot be added in the contact position or
non- EN/ ENO operator block position.

Breakpoints exist in places with possible variable value change, program branches, POU call position, and
places where output variables are assigned values. Choose View > Breakpoints to open the Breakpoints
dialog box and view all possible breakpoint positions.

Breakpoints can be added in the following positions:

 ■ Network start position, which is the position of the first possible breakpoint in the network. When a
breakpoint is added to a network, it is added to the first breakpoint position.

 ■ Operation blocks not including the EN/ENO operator, such as FB, action, program call, and execution
block.

 ■ Coil, return, and jump element positions.

5.3.12 LD Data Update

For InoProShop V1.3.0 and earlier, such as InoProShop V0.0.9.10, InoProShop V1.1.0, InoProShop V1.2.0,
InoProShop V1.2.60.0, and InoProShop V1.2.70.1, the accessed LD data must be updated before you can
use the functions of the optimized LD version.

LD data can be updated in the following two ways:

 ■ In the Project Version Information dialog box that is displayed when a project is opened, click the
LD/FBD tab. Select all the update marks shown in the following figure, and click OK.

 ■ Choose Project > Project Version Information. In the Project Version Information dialog box, click
the LD/FBD tab. Select all the update marks shown in the following figure, and click OK.

If the LD data is not updated, update description is displayed in the first network,, indicating that the data
is not updated, the editing may not meet the expecations, and you need to open the project or choose
Project > Project Version Information > [LD/FBD] and update the prorject LD data .

NOTE

LDs must be updated before use.

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Memo No. ___________

Date / /

-265-

Chapter 6 Inovance Instruction Library

Chapter 6 Inovance
Instruction Library

6.1 Cheat Sheet of Instructions ..266
6.1.1 Instructions ..266
6.1.2 Instruction Classification ..266
6.1.3 Cheat Sheet of Motion Control Instructions ..266

6.2 High-speed I/O ..275
6.2.1 High-speed Counting ...275
6.2.2 High-speed Axis ..288
6.2.3 External Interrupt ...302
6.2.4 List of Function Blocks ..303
6.2.5 7-segment LED Display ..303

6.3 CANopen ..304
6.3.1 CiA405 ...304
6.3.2 CANopen 402 ..319
6.3.3 CANopen 402 Parameter Setting ..339
6.3.4 CANopen 402 Error Diagnosis ...342
6.3.5 Precautions ..344

6.4 EtherCAT Remote Counting ..344
6.4.1 HC_Counter_ETC ...345
6.4.2 HC_SetCompare_ETC ..347
6.4.3 HC_Presetvalue_ETC ...349
6.4.4 HC_TouchProbe_ETC ..351
6.4.5 HC_Reset_ETC ..353

6.5 Process Library ..354
6.6 Others ..354

6.6.1 MC_Jog_HC ..355
6.6.2 MC_ResetDrive ...357
6.6.3 MC_ResetRemoteModule ..359
6.6.4 MC_PersistPosition ..361

-266-

Chapter 6 Inovance Instruction Library

6 Inovance Instruction Library
6.1 Cheat Sheet of Instructions

6.1.1 Instructions

In a PLC system, a command or a combination of commands for the CPU to finish an operation or
implement a function is called an instruction. An instruction set is called the instruction system.

6.1.2 Instruction Classification

CoDeSys instructions can be implemented in function mode or in function block mode. You do not
need to declare (instantiate) instructions implemented in function mode. You need to instantiate
instructions implemented in function block mode. Based on 3S basic instructions (see "Appendix"),
the AM600 provides diverse instructions and supports high-rate I/O, CANopen, and EtherCAT remote
counting. Therefore, this section only describes motion control instructions. For the overview of 3S basic
instructions, see the "Appendix".

6.1.3 Cheat Sheet of Motion Control Instructions

Motion control instructions include SM3_Basic, SM3_CNC, SM3_ETC, CmpHCBasic, IoDrvCANopenAxis,
and CmpHSIO instruction libraries. As SM3_Basic, SM3_CNC, and SM3_ETC instruction libraries are
provided by 3S and their functions are detailed in software manuals, the following only lists instructions.
This section details CmpHCBasic, IoDrvCANopenAxis, and CmpHSIO instruction libraries provided by
Inovance.

1 SM3_Basic

SM3_Basic instructions can be classified into basic drive instructions, file operation instructions, and
PLCopen instructions.

Basic drive instructions

Type Description Name Category

Brake control
Sets the brake status. SMC3_BrakeControl Function block

Obtains the brake status. SMC3_BrakeStatus Function block

Configuration
instruction

Saves the multi-turn encoder axis position
(after restart).

SMC3_PersistPosition Function block

Saves the single-turn encoder axis position
(after restart).

SMC3_PersistPositionSingleturn Function block

Retains the logical axis position (after
restart).

SMC3_PersistPositionLogical Function block

Sets the control mode. SMC_SetControllerMode Function block

-267-

Chapter 6 Inovance Instruction Library

Type Description Name Category

Diagnosis
instruction

Checks the axis communication status. SMC_CheckAxisCommunication Function block

Obtains the maximum axis acceleration or
deceleration.

SMC_GetMaxSetAccDec Function block

Obtains the maximum axis speed. SMC_GetMaxSetVelocity Function block

Obtains the tracking error. SMC_GetTrackingError Function block

Monitors the axis position. SMC_InPosition Function block

Measures the rotary axis rotation distance. SMC_MeasureDistance Function block

Direct axis
control
instruction

Monitors the axis position limit. SMC_CheckLimits Function block

Writes the axis position without detection. SMC_FollowPosition Function block

Writes the axis position and speed without
detection.

SMC_FollowPositionVelocity Function block

Writes axis parameters without detection. SMC_FollowSetValues Function block

Writes the axis speed without detection. SMC_FollowVelocity Function block

Error
processing
instruction

Deletes previous function block errors. MC_ClearFBError Function block

Reads previous function block errors. SMC_ReadFBError Function block

Formats error strings. SMC_ErrorString Function block

Homing
instruction

Returns to home. SMC_Homing Function block

Zoom
instruction

Changes the axis zoom ratio and axis type. SMC_ChangeGearingRatio Function block

2 File Operation Instructions

Type Description Name Category

Cam
instruction

Loads cam table data from files. SMC_ReadCAM Function block

Writes cam table data in files. SMC_WriteCAM Function block

Diagnosis
instruction

Logs axis diagnosis. SMC_AxisDiagnosticLog Function block

3 PLCopen Instructions

Type Description Name Category

Additional
instruction

Compensate the backlash. SMC_BacklashCompensation Function block

Reads the current axis position. SMC_ReadSetPosition Function block

Sets the torque. SMC_SetTorque Function block

-268-

Chapter 6 Inovance Instruction Library

-268-

Type Description Name Category

Additional
cam table
instruction

Calculates the slave axis position, speed,
as well as maximum and minimum
acceleration/deceleration based on the
master axis parameters in the cam table.

SMC_CAMBounds Function block

Calculates the maximum and minimum
values of the slave axis position based on the
master axis parameters in the cam table.

SMC_CAMBounds_Pos Function block

Registers cam tables and obtains tappet
information.

SMC_CamRegister Function block

Displays cam tables in the visual area. SMC_CamEditor Function block

Obtains the slave axis position, speed, and
acceleration based on the cam table and
master axis information.

SMC_GetCamSlaveSetPosition Function block

Obtains the current tappet status. SMC_GetTappetValue Function block

Master/
slave control
instruction

Starts the slave axis through cam control. MC_CamIn Function block

Stops the slave through cam control. MC_CamOut Function block

Establishes the master-slave axis cam control
relationship.

MC_CamTableSelect Function block

Sets the master-slave axis speed gear ratio. MC_GearIn Function block

Sets the master-slave axis position gear ratio. MC_GearInPos Function block

Cancels the set master-slave axis gear ratio. MC_GearOut Function block

Cancels the master-slave axis phase offset. MC_Phasing Function block

Single-
axis control
instruction

Sets the axis acceleration at different time
points.

MC_AccelerationProfile Function block

Stops axis motion (which can be interrupted). MC_Halt Function block

Moves the axis to home. MC_Home Function block

Moves the axis to a specified absolution
position.

MC_MoveAbsolute Function block

Adds a specified movement distance from
the previous axis position.

MC_MoveAdditive Function block

Moves the axis in relative position mode. MC_MoveRelative Function block

Superposes axis motion. MC_MoveSuperImposed Function block

Moves the axis at a constant speed. MC_MoveVelocity Function block

Sets the axis position at different time points. MC_PositionProfile Function block

Enables the axis. MC_Power Function block

Reads the current axis position. MC_ReadActualPosition Function block

Reads the current axis error. MC_ReadAxisError Function block

Reads motion control BOOL parameters. MC_ReadBoolParameter Function block

-269-

Chapter 6 Inovance Instruction Library

-269-

Type Description Name Category

Single-
axis control
instruction

Reads the current axis status. MC_ReadStatus Function block

Reads motion control parameters. MC_ReadParameter Function block

Resets the axis. MC_Reset Function block

Stops axis motion (which cannot be
interrupted).

MC_Stop Function block

Sets the axis speed at different time points. MC_VelocityProfile Function block

Writes motion control BOOL parameters. MC_WriteBoolParameter Function block

Writes motion control parameters. MC_WriteParameter Function block

Ends the correlation between the function
block and event.

MC_AbortTrigger Function block

Enables and disables digital cams. MC_DigitalCamSwitch Function block

Reads the current torque. MC_ReadActualTorque Function block

Reads the current speed. MC_ReadActualVelocity Function block

Sets the axis position. MC_SetPosition Function block

Records an axis position through event
trigger.

MC_TouchProbe Function block

Moves the axis to a specified absolution
position and keeps it moving at a specific
speed.

SMC_MoveContinuousAbsolute Function block

Moves the axis in relative position mode to a
specified position and keeps it moving at a
specific speed.

SMC_MoveContinuousRelative Function block

Indicates jog control. MC_Jog Function block

Controls motion in single step mode (the
motion distance can be controlled).

SMC_Inch Function block

4 SM3_CNC

SM3_CNC instructions can be classified into file operation instructions, CNC motion control instructions,
and CNC conversion instructions.

File Operation Instructions

Type Description Name Category

File
Operation
Instructions

Reads NC files. SMC_ReadNCFile Function block

Reads OutQueue files. SMC_ReadNCQueue Function block

-270-

Chapter 6 Inovance Instruction Library

5 CNC Motion Control Instructions

Type Description Name Category

Coordinates
conversion
instruction

Converts coordinates in cuboid mode. SMC_DetermineCuboidBearing Function block

Converts three-dimensional coordinates.
SMC_
CoordinateTransformation3D

Function block

Converts three-dimensional coordinates
inversely.

SMC_
InvCoordinateTransformation3D

Function block

Calculates coordinate vectors in the new
coordinate system.

SMC_TeachCoordinateSystem Function block

Calculates the RPY angle of unit vector in the
new coordinate system (corresponding to the
old coordinate system).

SMC_UnitVectorToRPY Function block

Sets the motion path corresponding to
rotation around the Z axis.

SMC_RotateQueue2D Function block

Scales the motion path. SMC_ScaleQueue3D Function block

Converts the motion path data based on
vectors.

SMC_TranslateQueue3D Function block

Direct axis
control
instruction

Controls the axis by speed. SMC_ControlAxisByVel Function block

Controls the axis by position. SMC_ControlAxisByPos Function block

Controls the axis by position and speed. SMC_ControlAxisByPosVel Function block

G-code
display
instruction

Converts G-code data bit strings. SMC_GCodeViewer Function block

OutQueue
instruction

Adds GEOINFO data to OutQueue. SMC_AppendObj Function block

Deletes GEOINFO data from OutQueue. SMC_DeleteObj Function block

Obtains the count of GEOINFO data in
OutQueue.

SMC_GetCount Function block

Obtains GEOINFO data in OutQueue. SMC_GetObj Function block

Finds GEOINFO data from the end of
OutQueue.

SMC_GetObjFromEnd Function block

Initializes OutQueue. SMC_OutQueueInit Function block

Sets the OutQueue data capacity. SMC_SetQueueCapacity Function block

-271-

Chapter 6 Inovance Instruction Library

Type Description Name Category

Motion
control
instruction

Removes loops. SMC_AvoidLoop Function block

Checks whether the paths are out of a
rectangle and outputs paths within the
rectangle..

SMC_CheckForLimits Function block

Checks path speeds and outputs paths within
the range.

SMC_CheckVelocities Function block

Modifies the path speed and acceleration/
deceleration to keep the speed within the
preset range.

SMC_ExtendedVelocityChecks Function block

Interpolate. SMC_Interpolator Function block

Interpolates (reverse interpolation supported). SMC_Interpolator2Dir Function block

Supports low-priority reverse interpolation. SMC_Interpolator2Dir_SlowTask Function block

Dynamically adjusts the speed and
acceleration/deceleration to prevent them
from exceeding the maximum.

SMC_LimitDynamics Function block

Limits the circular speed. SMC_LimitCircularVelocity Function block

Parses the G-code. SMC_NCDecoder Function block

Indicates the curve analyzer. SMC_ObjectSplitter Function block

Recomputes the slopes of A axis, B axis, and C
axis respectively.

SMC_RecomputeABCSlopes Function block

Smooths paths. SMC_RoundPath Function block

Indicates the path segment analyzer. SMC_SegmentAnalyzer Function block

Smooths additional axis paths. SMC_SmoothAddAxes Function block

Smooth paths. SMC_SmoothPath Function block

Processes the path offset. SMC_ToolCorr Function block

Supports cam hybrid interpolation. SMC_XInterpolator Function block

Obtains M function parameters. SMC_GetMParameters Function block

Reads parameters earlier when the M function
is enabled through interpolation.

SMC_PreAcknowledgeMFunction Function block

BlockSearch
instruction

Shortens the path. SMC_BlockSearch Function block

Saves the current path position. SMC_BlockSearchSavePos Function block

6 CNC Conversion Instructions

Type Description Name Category

Auxiliary
instruction

Calculates the direction based on the three-
dimensional vector coordinates.

SMC_CalcDirectionFromVector Function block

-272-

Chapter 6 Inovance Instruction Library

Type Description Name Category

Gantry
system
instruction

Calculates the tool center based on the axis
position.

SMC_TRAFOF_5Axes Function block

Converts the two-dimensional coordinates
into the G-code coordinates.

SMC_TRAFOF_Gantry2 Function block

Converts the two-dimensional coordinates
into the G-code coordinates in linear mode.

SMC_TRAFOF_Gantry2Tool1 Function block

Converts the two-dimensional coordinates
into the G-code coordinates in rectangular
mode.

SMC_TRAFOF_Gantry2Tool2 Function block

Converts the three-dimensional coordinates
into the G-code coordinates.

SMC_TRAFOF_Gantry3 Function block

Converts the two-dimensional coordinates
with rotary axes into the G-code coordinates.

SMC_TRAFOF_GantryCutter2 Function block

Converts the three-dimensional coordinates
with rotary axes into the G-code coordinates.

SMC_TRAFOF_GantryCutter3 Function block

Converts the T-shaped two-dimensional
coordinates into the G-code coordinates.

SMC_TRAFOF_GantryT2 Function block

Converts the H-shaped two-dimensional
coordinates into the G-code coordinates.

SMC_TRAFOF_GantryH2 Function block

Converts the G-code coordinates into the two-
dimensional reverse coordinates.

SMC_TRAFOV_Gantry2 Function block

Converts the G-code coordinates into the
three-dimensional reverse coordinates.

SMC_TRAFOV_Gantry3 Function block

Converts the G-code coordinates into the two-
dimensional reverse coordinates with rotary
axes.

SMC_TRAFOV_GantryCutter2 Function block

Converts the G-code coordinates into the
three-dimensional reverse coordinates with
rotary axes.

SMC_TRAFOV_GantryCutter3 Function block

Converts the G-code coordinates into
the H-shaped two-dimensional reverse
coordinates.

SMC_TRAFOV_GantryH2 Function block

Calculates the position of the tool center
relative to an axis.

SMC_TRAFO_5Axes Function block

Converts the G-code coordinates into the two-
dimensional coordinates.

SMC_TRAFO_Gantry2 Function block

Converts the G-code coordinates into the two-
dimensional coordinates in linear mode.

SMC_TRAFO_Gantry2Tool1 Function block

Converts the G-code coordinates into the two-
dimensional coordinates in rectangular mode.

SMC_TRAFO_Gantry2Tool2 Function block

Converts the G-code coordinates into the
three-dimensional coordinates.

SMC_TRAFO_Gantry3 Function block

Converts the G-code coordinates with rotary
axes into the two-dimensional coordinates.

SMC_TRAFO_GantryCutter2 Function block

Converts the G-code coordinates with rotary
axes into the three-dimensional coordinates.

SMC_TRAFO_GantryCutter3 Function block

Converts the G-code coordinates into the
H-shaped two-dimensional coordinates.

SMC_TRAFO_GantryH2 Function block

Converts the G-code coordinates into the
T-shaped two-dimensional coordinates.

SMC_TRAFO_GantryT2 Function block

-273-

Chapter 6 Inovance Instruction Library

Type Description Name Category

Parallel
robot
system
instruction

Indicates positive conversion of a bipod arm. SMC_TRAFOF_Bipod_Arm Function block

Indicates positive conversion of a tripod. SMC_TRAFOF_Tripod Function block

Indicates positive conversion of a tripod arm. SMC_TRAFOF_Tripod_Arm Function block

Indicates inverse conversion of a bipod arm. SMC_TRAFO_Bipod_Arm Function block

Indicates inverse conversion of a tripod. SMC_TRAFO_Tripod Function block

Indicates inverse conversion of a tripod arm. SMC_TRAFO_Tripod_Arm Function block

Robot
kinematics
conversion
instruction

Indicates motion conversion of the articulated
6-DOF robot world coordinates into the 6-axis
position coordinates.

SMC_TrafoF_
ArticulatedRobot_6DOF

Function block

Indicates inverse motion conversion of a
6-DOF robot.

SMC_Trafo_
ArticulatedRobot_6DOF

Function block

Articulated
robot
system
instruction

Indicates positive polar conversion. SMC_TRAFOF_Polar Function block

Indicates positive conversion of a 2-axis
Selective Compliance Assembly Robot Arm
(SCARA).

SMC_TRAFOF_Scara2 Function block

Indicates positive conversion of a 3-axis
SCARA.

SMC_TRAFOF_Scara3 Function block

Indicates inverse polar conversion. SMC_TRAFO_Polar Function block

Indicates inverse conversion of a 2-axis SCARA. SMC_TRAFO_Scara2 Function block

Indicates inverse conversion of a 3-axis SCARA. SMC_TRAFO_Scara3 Function block

7 ETC Instructions

Type Description Name Category

EtherCAT
parameter
read/write
instruction

Reads values corresponding to the slave
index and subindex.

SMC3_ETC_ReadParameter_CoE Function block

Writes values corresponding to the slave
index and subindex.

SMC3_ETC_WriteParameter_CoE Function block

8 CmpHCBasic

Type Description Name Category

Single-axis
control

Indicates enhanced jog control. MC_Jog_HC Function block

EtherCAT
drive reset

Resets single-drive communication and axes
in enhanced mode.

MC_ResetDrive Function block

EtherCAT
slave reset

Resets single-slave communication. MC_ResetRemoteModule Function block

Position
retention

Powers on/off and retains the position of the
absolute value motor drive.

MC_PersistPosition Function block

-274-

Chapter 6 Inovance Instruction Library

9 IoDrvCANopenAxis

Type Description Name Category

Single-axis
control

Enables the motor. MC_Power_CO Function block

Positions the axis absolutely. MC_MoveAbsolute_CO Function block

Positions the axis relatively. MC_MoveRelative_CO Function block

Indicates the speed mode. MC_MoveVelocity_CO Function block

Returns to home. MC_Home_CO Function block

Stops the axis, which cannot be interrupted by
other instructions.

MC_Stop_CO Function block

Stops the axis, which can be interrupted by other
instructions.

MC_Halt_CO Function block

Resets the axis. MC_Reset_CO Function block

Indicates jog control. MC_Jog_CO Function block

Reads the current state machine. MC_ReadStatus_CO Function block

Parameter
reading and
writing

Reads slave object dictionary values. MC_ReadParameter_CO Function block

Writes slave object dictionary values. MC_WriteParameter_CO Function block

10 CmpHSIO

Type Description Name Category

High-speed
counting

Enables the counter. HC_Counter Function block

Sets coincident output. HC_SetCompare Function block

Writes preset values. HC_PresetValue Function block

Enables external interrupts and coincident
interrupts.

HC_EnableInterrupt Function block

Reads latch values. HC_TouchProbe Function block

Reads the measured pulse width. HC_MeasurePulseWidth Function block

Samples counters, counting the number of counters
within a period of time.

HC_Sample Function block

Reads parameters. HC_ReadBoolParameter Function block

Writes parameters. HC_WriteBoolParameter Function block

Sets up to 100 comparison values. "Done" indicates
that signals are output, and "Value" indicates the
index number currently output.

HC_SetCompareM Function block

Sets ring counting. HC_SetRing Function block

Resets the port for coincident output (set in
the programming software). The port for direct
hardware output (ImRefresh and ImRefreshCycle of
HC_SetCompare) is invalid.

HC_ResetCmpOutput Function block

Writes parameters. HC_WriteInterruptParameter Function block

-275-

Chapter 6 Inovance Instruction Library

Type Description Name Category

High-speed
axis

Indicates jog control. MC_Jog_P Function block

Indicates homing motion. MC_Home_P Function block

Indicates absolute motion. MC_MoveAbsolute_P Function block

Indicates relative motion. MC_MoveRelative_P Function block

Moves the axis in speed mode. MC_MoveVelocity_P Function block

Stop MC_Stop_P Function block

Resets the axis. MC_Reset_P Function block

Enables the axis. MC_Power_P Function block

Reads parameters. MC_ReadParameter_P Function block

Writes parameters. MC_WriteParameter_P Function block

Sets a logical address. MC_SetPosition_P Function block

Reads the axis status. MC_ReadStatus_P Function block

6.2 High-speed I/O

Hardware feature: 16 input ports are available, supporting 8-channel A/B-phase inputs. The first eight
ports can serve as interrupt ports. The maximum input frequency is 200 kHz. Eight output ports are
available, supporting 4-channel outputs in pulse plus direction mode or CW/CCW mode. The first two
outputs support homing, hardware limit, and speed/position switchover functions.

Function overview: The local high-speed I/O port has counting, sampling, frequency measurement,
comparison output, touch probe, interrupt, pulse axis control, and other functions. The maximum
frequency of sampling and output is 200 kHz. The maximum frequency of high-speed interrupts is 3 kHz.

Library name: CmpHSIO (applicable to V0.0.0.6 and later versions)

6.2.1 High-speed Counting

1 Function Blocks

Table 6-1 Input resource allocation table
Function Input Resources X0-Xf

Single-phase 0 1 2 3 4 5 6 7

A/B-phase 0 1 2 3 4 5 6 7 8 9 a b c d e f

Frequency and rotational speed measurement 0 1 2 3

Pulse width 8 9 a b

Touch probe 8 9 a b

Sampling 8 9 a b

-276-

Chapter 6 Inovance Instruction Library

 ■ HC_Counter

Enable the counter.

Figure 6-1 Diagram of the HC_Counter function block

Table 6-2 Table of HC_Counter function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number [0..7].

Enable Bool In
Indicates the enabling bit (1: Enable the counter and start
counting; 0: Stop counting).

Direction Bool In

0: Up counting; 1: Down counting

It is applicable only to the single-phase input or clock
mode.

Flow changes are valid only in this case.

CounterValue Dint Out Indicates the current value of the counter.

Frequency UDINT Out Indicates the measured pulse frequency, in the unit of Hz.

RPM REAL Out Indicates revolutions per minute, in the unit of r/min.

Valid Bool Out 1: Valid; 0: Invalid

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

Table 6-3 Allocation table of counter and counting port resources
Counting

Mode

Port

Counter
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 Xa Xb Xc Xd Xe Xf

AB

A/B-phase
counting

Counter0 A B T

Counter1 A B T

Counter2
(△)

A B T

Counter3
(△)

A B T

Counter4
(△)

A B

Counter5
(△)

A B

Counter6
(△)

A B

Counter7
(△)

A B

-277-

Chapter 6 Inovance Instruction Library

Counting

Mode

Port

Counter
X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 Xa Xb Xc Xd Xe Xf

A-phase

counting

Counter0 A

Counter1 A

Counter2 A

Counter3 A

Counter4
(△)

A

Counter5
(△)

A

Counter6
(△)

A

Counter7
(△)

A

1) (△): Calculates the FrequencyValue and RotationRateValue by using the software.

2) When Counter0 or Counter1 counts in AB-phase mode, only the A-phase frequency is displayed.

3) T indicates externally triggered signals.

4) The first four counters are different from the last four counters:

Positive counting: When the count reaches 2147483647, the first four counters stop, while the last four
counters continue counting from -2147483648.

Negative counting: When the count reaches -2147483648, the first four counters stop, while the last four
counters continue counting from 2147483647.

5) The following describes differences between linear counting and ring counting:

Linear counting: (DownLimitValue, UpLimitValue)

Ring counting: [iRingDownValue, iRingUpValue]

Counters 0 to 3: The linear counting range is (-2147483648, 2147483647), -2147483648 and 2147483647
excluded.

The ring counting range is [-2147483648, 2147483647], -2147483648 and 2147483647 included.

Counters 4 to 7: The linear counting range is (-2147483648, 2147483647), -2147483648 and 2147483647
excluded.

6) Counters 4 to 7: When the count is close to the boundary value, the system may not generate a
counter overflow alarm because of the scan cycle.

7) When a program is downloaded, the counter is not zeroed.

8) The HC_Counter function block and HC_MeasurePulseWidth function block cannot be used
simultaneously. Apply either of them to recommended programs.

Note: The HC_Sample function block runs only after the HC_Counter function block is enabled.

-278-

Chapter 6 Inovance Instruction Library

 ■ HC_SetCompare

When setting coincident output, call HC_EnableInterrupt to enable interrupts.

Figure 6-2 Diagram of the HC_SetCompare function block

Table 6-4 Table of HC_SetCompare function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number [0..7].

Execute Bool In Indicates the enabling bit, triggered by rising edges.

CompareValue Dint In
Indicates the preset comparison value of the counter.

The value ranges from -2147483648 to 2147483647,
-2147483648 and 2147483647 excluded.

ImRefresh Bool

0: Configures the output port in the programming software.

1: Indicates direct hardware output.

Counter 0: Y0

Counter 1: Y1

...

Counter 7: Y7

ImRefreshCycle Uint
The output time ranges from 0 to 30000, in the unit of 100
μs. The maximum output time is 3,000 ms. For example, the
value 10000 indicates that the output time is 1,000 ms.

Done Bool Out Indicates the flag of successful function block initialization.

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

Note: Y0 to Y7 can be controlled in ImRefresh=0 mode or ImRefresh=1 mode.

1) ImRefresh=0: The counter is configured in the programming software for soft output control. Each
counter outputs any of Y0 to Y7 with a latency.

The output time ranges from 100 μs to 3,000 ms.

If ImRefreshCycle is 0, call HC_ResetCmpOutput to pull low the output.

2) ImRefresh=1: Data is output immediately through hardware. Each counter outputs specified data of
Y0 to Y7 without a latency. The output time is set through ImRefreshCycle.

The output time ranges from 0 to 3,000 ms.

3) Call HC_EnableInterrupt in advance to enable coincident interrupts.

4) After hot reset and cold reset, retain the previous comparison value.

-279-

Chapter 6 Inovance Instruction Library

 ■ HC_PresetValue

Write preset values.

Figure 6-3 Diagram of the HC_PresetValue function block

Table 6-5 Table of HC_PresetValuefunction block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In
Specifies the counter number (0 to 7).

Preset values can be written through external trigger only in counters
0 to 3.

TriggerType BYTE In

0: Triggered by rising edges

1: Triggered by external inputs

External signals:

couter0->x8

couter1->x9

couter2->xa

couter3->xb

2: Preset during coincident output, triggered by rising edges
Execute Bool In Indicates the enabling bit, triggered by rising edges.

PresetValue Dint In
Indicates the preset value of the counter.

The value ranges from -2147483648 to 2147483647, -2147483648 and
2147483647 excluded.

Done Bool Out Indicates that the function block execution is completed.
Error Bool Out Indicates the function block error flag.
ErrorID Uint Out Indicates the error code.

 ■ HC_EnableInterrupt

Enables external interrupts and coincident interrupts.

Figure 6-4 Diagram of the HC_EnableInterrupt function block

Table 6-6 Table of HC_EnableInterrupt function block I/O parameters

Parameter Name Parameter Type I/O Type Description
Enable Bool In Enables interrupts (1: Enable; 0: Invalid).

External Uint In
Enables external input interrupts. For example, if the value is 3
(2#11 in binary format), 0 and 1 bits of the port are enabled.

Compare Uint In
Enables coincident interrupts. For example, if the value is 3 (2#11
in binary format), 0 and 1 bits of the port are enabled.

Valid Bool Out Indicates that interrupts are valid.
Error Bool Out Indicates the function block error flag.
ErrorID Uint Out Indicates the error code.

-280-

Chapter 6 Inovance Instruction Library

Note

1) If HC_WriteInterruptParameter is executed before HC_EnableInterrupt, HC_WriteInterruptParameter
is valid.

2) If HC_EnableInterrupt is executed before HC_WriteInterruptParameter, interrupt parameters in the
programming software are valid.

If HC_WriteInterruptParameter is executed again, HC_WriteInterruptParameter is valid.

 ■ HC_TouchProbe

When external interrupts are generated, read and latch the current values of counters 0 to 3.

Figure 6-5 Diagram of the HC_TouchProbe function block

Table 6-7 Table of HC_TouchProbe function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 3).

Execute Bool In
Interrupts are triggered by rising edges. Only one interrupt can
be triggered at one time.

Done Bool Out 1: Execution finished

Busy Bool Out Indicates that the function block is being executed.

Value Dint Out Indicates the latch value.

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

Figure 6-6 Sequence diagram of the HC_TouchProbe function block

-281-

Chapter 6 Inovance Instruction Library

 ■ HC_MeasurePulseWidth

When the external trigger is valid, read the measured pulse width.

Figure 6-7 Diagram of the HC_MeasurePulseWidth function block

Table 6-8 Table of HC_MeasurePulseWidth function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 3).

Enable Bool In Indicates the enabling bit, triggered by level.

Value Udint Out
Indicates the measured pulse width, in the unit of μs, ranging from
0 to 4000000.

Mode Bool In
0: External signals at high level (high-level pulse width measured);
1: External signals at low-level (low-level pulse width measured)

Busy Bool Out 1: Sampling; 0: Not sampling

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

Note: The HC_Counter function block and HC_MeasurePulseWidth function block cannot be used
simultaneously. Apply either of them to recommended programs.

 ■ HC_Sample

Sample counters, counting the number of counters within a period of time.

Figure 6-8 Diagram of the HC_Sample function block

Table 6-9 Table of HC_Sample function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 3).

Enable Bool In
Indicates the enabling bit, triggered by level.

Waits for triggers by external inputs (x8/x9/xa/xb).

SampleTime Uint In 10 to 65535 (10 ms to 65535 ms)

Value Dint Out Indicates the sampled value.

Done Bool Out 1: Sampling finished; 0: Sampling unfinished

Busy Bool Out
1: Sampling; 0: Stop

It is applicable only to counters 0 to 3.

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

-282-

Chapter 6 Inovance Instruction Library

Figure 6-9 Sequence diagram of the HC_Sample function block

Note: The HC_Sample function block runs only after the HC_Counter function block is enabled.

 ■ HC_ReadBoolParameter

Read parameters.

Figure 6-10 Diagram of the HC_ReadBoolParameter function block

Table 6-10 Table of HC_ReadBoolParameter function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 7).

Enable Bool In Indicates the enabling bit.

ParameterNumber Dint In Indicates the parameter number.

Valid Bool Out 1: Valid; 0: Invalid

Value Bool Out Indicates the parameter value.

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

Table 6-11 PN parameter mapping table

PN Name DataByte R/W Comments

10001 bDisableCmpEvent Bool R/W
Sets external comparison events for user tasks (0: Valid; 1:
Invalid).

10002 bDisableOutput Bool R/W
Indicates whether data is output through the coincident
output port (0: No; 1: Yes). It is invalid for ImRefresh.

10008 Direction Bool R/W Indicates the counter direction.

10009 bDisableFrequency Bool R/W Disables FrequencyValue in HC_Counter.

10010 bDisableRotationRate Bool R/W Disables RotationRateValue in HC_Counter.

-283-

Chapter 6 Inovance Instruction Library

 ■ HC_WriteBoolParameter

Write parameters.

Figure 6-11 Diagram of the HC_WriteBoolParameter function block

Table 6-12 Table of HC_WriteBoolParameter function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 7).

Execute Bool In Indicates the enabling bit, triggered by rising edges.

ParameterNumber DINT In Indicates the parameter number.

Value BOOL In Indicates the parameter value.

Done Bool Out 1: Execution finished; 0: Execution unfinished

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

Table 6-13 PN parameter mapping table

PN Name DataByte R/W Comments

10001 bDisableCmpEvent Bool R/W
Sets external comparison events for user tasks (1: Invalid; 0:
Valid).

10002 bDisableOutput Bool R/W
Indicates whether data is output through the coincident
output port (0: Yes; 1: No). It is invalid when ImRefresh is
true.

10008 Direction Bool R/W
Indicates the counter direction, which takes effect
immediately.

10009 bDisableFrequency Bool R/W Disables FrequencyValue in HC_Counter.

10010 bDisableRotationRate Bool R/W Disables RotationRateValue in HC_Counter.

 ■ HC_SetCompareM

Coincident output: You can set up to 100 comparison values. "Done" indicates that signals are output,
and "Value" indicates the index number currently output.

Figure 6-12 Diagram of the HC_SetCompareM function block

-284-

Chapter 6 Inovance Instruction Library

Table 6-14 Table of HC_SetCompareM function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 7).

Enable Bool In Indicates the enabling bit, triggered by rising edges.

CompareValues
ARRAY [0..99] OF
DINT

In

Indicates one-dimensional arrays of counter comparison
values. A maximum of 100 arrays are supported. Each value
ranges from -2147483648 to 2147483647, -2147483648 and
2147483647 excluded.

Numbers Dword In
Indicates the number of one-dimensional arrays of
CompareValues. The maximum number is 100.

ImRefresh Bool In Data is output directly through hardware.

ImRefreshCycle Uint In

Indicates the time for output directly through hardware, in
the unit of 100 μs. The maximum output time is 3,000 ms.
For example, the value 10000 indicates that the output time
is 1,000 ms.

Done Bool Out Indicates the execution complete flag.

NumOfEqual Dword Out Indicates the number of equal values.

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

Note

1) 1: When Enable=1, the counting direction cannot be changed.

2) Array elements must be increased gradually in positive or decreased gradually in negative. Equal
values are not allowed.

3) Positive: The start value must be less than the first comparison value. Otherwise, the first comparison
value cannot be implemented.

Negative: The start value must be greater than the first comparison value. Otherwise, the first
comparison value cannot be implemented.

4) Call HC_EnableInterrupt in advance to enable coincident interrupts.

5) When the device runs in the forward direction, parameters are defined in the following format:

arr1 :ARRAY [0..99] OF DINT := [2000,4000,6000,8000,10000,12000,14000,16000,18000,20000];

When the device runs in the reverse direction, parameters are defined in the following format:

arr2 :ARRAY [0..99] OF DINT := [20000,18000,16000,14000,12000,10000,8000,6000,5000,3000];

6) This function depends on HC_Counter.

7) Y0 to Y7 can be controlled in ImRefresh=0 mode or ImRefresh=1 mode.

 ■ ImRefresh=0: The counter is configured in the programming software for soft output control. Each
counter outputs any of Y0 to Y7 with a latency.

The output time ranges from 100 μs to 3,000 ms.

If ImRefreshCycle is 0, call HC_ResetCmpOutput to pull low the output.

 ■ ImRefresh=1: Data is output immediately through hardware. Each counter outputs specified data of
Y0 to Y7 without a latency. The output time is set through ImRefreshCycle.

The output time ranges from 0 to 3,000 ms.

 ■ Call HC_EnableInterrupt in advance to enable coincident interrupts.

-285-

Chapter 6 Inovance Instruction Library

8) After hot reset and cold reset, retain the previous comparison value.

 ■ HC_SetRing

Sets ring counting.

Figure 6-13 Diagram of the HC_SetRing function block

Table 6-15 Table of HC_SetRing function block I/O parameters

Parameter
Name

Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 3).

Execute Bool In Indicates the enabling bit, triggered by rising edges.

DownValue Dint In
Indicates the lower limit, ranging from -2147483648 to
2147483647, -2147483648 and 2147483647 excluded.

UpValue Dint In
Indicates the upper limit, ranging from -2147483648 to
2147483647, -2147483648 and 2147483647 excluded.

SetDown Bool In Forcibly counts from the lower limit.

Done Bool Out Indicates that setting succeeded.

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

 ■ HC_ResetCmpOutput

Resets the port for coincident output (set in the programming software). The port for direct hardware
output (ImRefresh and ImRefreshCycle of HC_SetCompare) is invalid.

Figure 6-14 Diagram of the HC_ResetCmpOutput function block

Table 6-16 Table of HC_ResetCmpOutput function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Counter COUNTER_REF In Specifies the counter number (0 to 7).

Execute Bool In
Indicates the enabling bit, triggered by rising
edges.

Done Bool Out Indicates the flag of successful setting.

Error Bool Out Indicates the function block error flag.

ErrorID Uint Out Indicates the error code.

-286-

Chapter 6 Inovance Instruction Library

 ■ HC_WriteInterruptParameter

Write interrupt parameters.

Figure 6-15 Diagram of the HC_WriteInterruptParameter function block

Table 6-17 Table of HC_WriteInterruptParameter function block I/O parameters

Parameter Name Parameter Type I/O Type Description
Execute Bool In Indicates the enabling bit, triggered by rising edges.
ParameterNumber DINT In Indicates the parameter number.
Value BOOL In Indicates the parameter value.
Done Bool Out 1: Execution finished; 0: Execution unfinished
Error Bool Out Indicates the function block error flag.
ErrorID Uint Out Indicates the error code.

Table 6-18 PN parameter mapping table

PN Name DataByte R/W Comments
10080 X0InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10081 X1InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10082 X2InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10083 X3InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10084 X4InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10085 X5InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10086 X6InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10087 X7InterruptEvent Byte W 0: Rising edge; 1: Falling edge; 2: Rising edge + falling edge
10088 X8InterruptEvent Byte W Counter0 HC_TouchProbe interrupt: 0: Rising edge; 1: Falling edge
10089 X9InterruptEvent Byte W Counter1 HC_TouchProbe interrupt: 0: Rising edge; 1: Falling edge
10090 XaInterruptEvent Byte W Counter2 HC_TouchProbe interrupt: 0: Rising edge; 1: Falling edge
10091 XbInterruptEvent Byte W Counter3 HC_TouchProbe interrupt: 0: Rising edge; 1: Falling edge

 ■ HC_Reset

Clear errors.

Figure 6-16 Diagram of the HC_Reset function block

Table 6-19 Table of HC_Reset function block I/O parameters

Parameter Name Parameter Type I/O Type Description
Counter COUNTER_REF In Specifies the counter number (0 to 7).
Execute Bool In Indicates the enabling bit, triggered by rising edges.
Done Bool Out 1: Execution finished; 0: Execution unfinished
Error Bool Out Indicates the function block error flag.
ErrorID Uint Out Indicates the error code.

-287-

Chapter 6 Inovance Instruction Library

2 ErrorID
Basic format:

Library + function block + error code

3 3-bit

Library: The default high-speedI/O is 0.

Function block number: Function blocks are numbered from 01. Function blocks are detailed in 6.2.4. List
of Function Blocks.

Error code: The error code starts from 01. Error codes are detailed in the list of counter error codes. If the
error code is less than 500, it indicates a serious error. If the error code is greater than 500, it indicates a
function block error.

In the example of 14506, 14 indicates HC_WriteParameter, and 506 indicates a parameter error.

Table 6-20 List of counter error codes

Indicates the
error code.

Definition Description

001 ERR_COUNTERID_INVALID
The entered channel number is invalid. A valid
number ranges from 0 to 7.

003 ERR_CNT_OVERFLOW The counter overflow/underflow is incorrect.

004 ERR_COUNTER_NOT_CHOSEN
No high-speed function is selected. Select a high-
speed in the programming software.

007 ERR_COUNTER_NOT_ENABLED HC_Counter is not enabled.

101 ERR_WRITEINTERRUPTPARAMETER_UNVALIAD The write interrupt parameter is invalid.

102 ERR_INTERRUPT_NOT_CHOSE
Interrupt Input is not selected in the
programming software.

501
ERR_SETCOMPARE_IMREFRESHCYCLE_
OVERFLOW

The comparison value ImRefreshCycle exceeds
30000. A valid comparison value ranges from 0 to
30000.

502 ERR_SETCOMPAREM_NUMBERS_OVERFLOW
The HC_SetCompareM number ranges from 1 to
100.

503 ERR_PREWR_VALUE_OVERFLOW The preset value is out of range.

504 ERR_AVERAGE_PARA_UNVALIAD
The set average frequency and average rotational
speed are invalid.

505 ERR_ROTATION_PULSES_UNIT_UNVALIAD The set number of pulses per rotation is invalid.

506 ERR_WRITEBOOlPARAMETER_UNVALIAD
The set HC_WriteBoolParameter parameter is
invalid.

507 ERR_READBOOLPARAMETER_UNVALIAD
The obtained HC_ReadBoolParameter parameter
is invalid

508 ERR_MEASURE_WIDTH_OVERFLOW The measured width is invalid.

509
ERR_SETCOMPAREM_IMREFRESHCYCLE_
OVERFLOW

The comparison value ImRefreshCycle exceeds
30000. A valid comparison value ranges from 0 to
30000.

510 ERR_PRESET_TRIGGERTYPE_OVERFLOW The preset parameter is invalid.

511 ERR_WRITEPARAMETER_UNVALIAD The set HC_WriteParameter parameter is invalid.

513 ERR_FUNC_COUNTERID_INVALID
The special channel number is invalid. A valid
number ranges from 0 to 3.

-288-

Chapter 6 Inovance Instruction Library

Indicates the
error code.

Definition Description

514 ERR_COUNTER_NOT_CHOSE_EXETERNAL_X
External Trigger is not selected in the
programming software.

515 ERR_CNT_FORMAT_NOT_RING
The ring counting type is incorrect. Select a correct
type in the programming software.

516 ERR_RING_DOWNVAL_BEYOND_UPVAL
The lower limit for ring counting is equal to or
greater than the upper limit.

517 ERR_SAMPLE_VALUE_LESS
The sampling time is too short. A valid value
ranges from 10 to 65535, in the unit of ms.

518 ERR_RING_VALUE_OVERFLOW The ring counting is out of range.

6.2.2 High-speed Axis

The maximum frequency of high-speed axis input is 200 kHz.

1 Function Blocks

 ■ MC_Jog_P

Figure 6-17 Diagram of the MC_Jog_P function block

Table 6-21 Table of MC_Jog_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

JogForward Bool In Indicates a jog in the forward direction, triggered by level.

JogBackward Bool In Indicates a jog in the reverse direction, triggered by level.

Velocity Dword In
Indicates the jog speed, in the unit of pulse/s. The maximum
frequency is 200 kHz.

Acceleration Dword In

Indicates the acceleration, in the unit of pulse/s². The maximum
value is 20000000 by default. It can be modified through
dwMaxAcceleration.

See remarks.

Deceleration Dword In

Indicates the deceleration, in the unit of pulse/s². The maximum
value is 20000000 by default. It can be modified through
dwMaxDeceleration.

See remarks.

Jerk Dword In Indicates the jerk, in the unit of pulse/s³.

Busy Bool Out
Indicates the jog flag, which is ON during motion and OFF when
motion stops.

CommandAborted Bool Out Indicates that the command is interrupted by other commands.

-289-

Chapter 6 Inovance Instruction Library

Parameter Name Parameter Type I/O Type Description

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

1) The acceleration and deceleration values are multiples of 125.

2) The speed cannot be changed during acceleration/deceleration.

3) S-shaped curve: The jerk is calculated internally. All jerk parameters are calculated internally.

4) S-shaped curve: The speed, acceleration, and deceleration cannot be calculated during motion.

5) S-shaped curve: When the deceleration is equal to or greater than the speed multiplied by 5, no
smearing or truncation occurs.

 ■ MC_Home_P

Figure 6-18 Diagram of the MC_Home_P function block

Table 6-22 Table of MC_Home_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Execute Bool In Indicates the enabling bit, triggered by rising edges.

Position Dint In Indicates homing position.

Done Bool Out Indicates the homing complete flag.

Busy Bool Out
Indicates the motion flag, which is ON during motion and OFF
when motion stops.

CommandAborted Bool Out Indicates that the command is interrupted by other commands.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

-290-

Chapter 6 Inovance Instruction Library

mode0

Homing in the forward direction: Set the deceleration point and home as the home switch and set the
right limit for homing.

Note: When homing is enabled, the position on the right of the final limit position is invalid.

mode1

Homing in the reverse direction: Set the deceleration point and home as the home switch and set the left
limit for homing.

Note: When homing is enabled, the position on the left of the left final position is invalid.

-291-

Chapter 6 Inovance Instruction Library

mode2

Homing in the forward direction: Set the deceleration point and home as the home switch.

Note: When homing is enabled, the position on the center or right of the home position is invalid.

mode3

Homing in the reverse direction: Set the deceleration point and home as the home switch.

Note: When homing is enabled, the position on the center or left of the home position is invalid.

 ■ MC_MoveAbsolute_P

Figure 6-19 Diagram of the MC_MoveAbsolute_P function block

-292-

Chapter 6 Inovance Instruction Library

Table 6-23 Table of MC_MoveAbsolute_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Execute Bool In Indicates the enabling bit, triggered by rising edges.

Position DINT In Position

Velocity Dword In
Indicates the speed, in the unit of pulse/s. The maximum
frequency is 200 kHz.

Acceleration Dword In

Indicates the acceleration, in the unit of pulse/s². The
maximum value is 20000000 by default. It can be modified
through dwMaxAcceleration.

See remarks.

Deceleration Dword In

Indicates the deceleration, in the unit of pulse/s². The
maximum value is 20000000 by default. It can be modified
through dwMaxDeceleration.

See remarks.

Jerk Dword In Indicates the jerk, in the unit of pulse/s³.

Done Bool Out Complete flag

Busy Bool Out
Indicates the motion flag, which is ON during motion and OFF
when motion stops.

CommandAborted Bool Out
Indicates that the command is interrupted by other
commands.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

Remarks:

1) The acceleration and deceleration values are multiples of 125.

2) The speed cannot be changed during acceleration/deceleration.

3) Ensure that the positioning distance value does not exceed 2147483647. Otherwise, the device runs in
the reverse direction.

4) S-shaped curve: The jerk is calculated internally. All jerk parameters are calculated internally.

5) S-shaped curve: The speed, acceleration, and deceleration cannot be calculated during motion.

6) S-shaped curve: When the deceleration is equal to or greater than the speed multiplied by 5, no
smearing or truncation occurs.

-293-

Chapter 6 Inovance Instruction Library

 ■ MC_MoveRelative_P

Figure 6-20 Diagram of the MC_MoveRelative_P function block

Table 6-24 Table of MC_MoveRelative_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description
Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.
Execute Bool In Indicates the enabling bit, triggered by rising edges.
Distance DINT In Indicates the relative distance.

Velocity Dword In
Indicates the speed, in the unit of pulse/s. The maximum
frequency is 200 kHz.

Acceleration Dword In

Indicates the acceleration, in the unit of pulse/s². The maximum
value is 20000000 by default. It can be modified through
dwMaxAcceleration.

See remarks.

Deceleration Dword In

Indicates the deceleration, in the unit of pulse/s². The maximum
value is 20000000 by default. It can be modified through
dwMaxDeceleration.

See remarks.
Jerk Dword In Indicates the jerk, in the unit of pulse/s³.
Done Bool Out Complete flag

Busy Bool Out
Indicates the motion flag, which is ON during motion and OFF
when motion stops.

CommandAborted Bool Out Indicates that the command is interrupted by other commands.
Error Bool Out Indicates the axis error flag.
ErrorID Uint Out Indicates the error code.

Note

1) The acceleration and deceleration values are multiples of 125.

2) When the distance value is negative, it indicates that the device runs again from the stop position.

In this case, stop pulses and then run the device the distance in the reverse direction.

3) The speed cannot be changed during acceleration/deceleration.

4) Ensure that the positioning distance value does not exceed 2147483647. Otherwise, the device runs in
the reverse direction.

-294-

Chapter 6 Inovance Instruction Library

5) S-shaped curve: The jerk is calculated internally. All jerk parameters are calculated internally.

6) S-shaped curve: The speed, acceleration, and deceleration cannot be calculated during motion.

7) S-shaped curve: When the deceleration is equal to or greater than the speed multiplied by 5, no
smearing or truncation occurs.

 ■ MC_MoveVelocity_P

Figure 6-21 Diagram of the MC_MoveVelocity_P function block

Table 6-25 Table of MC_MoveVelocity_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Execute Bool In Indicates the enabling bit, triggered by rising edges.

Velocity Dword In
Indicates the speed, in the unit of pulse/s. The maximum
frequency is 200 kHz.

Acceleration Dword In

Indicates the acceleration, in the unit of pulse/s². The maximum
value is 20000000 by default. It can be modified through
dwMaxAcceleration.

See remarks.

Deceleration Dword In

Indicates the deceleration, in the unit of pulse/s². The
maximum value is 20000000 by default. It can be modified
through dwMaxDeceleration.

See remarks.

Jerk Dword In Indicates the jerk, in the unit of pulse/s³.

Direction Bool In Indicates the direction.

InVelocity Bool Out Indicates that the speed reaches the set value.

Busy Bool Out
Indicates the motion flag, which is ON during motion and OFF
when motion stops.

CommandAborted Bool Out Indicates that the command is interrupted by other commands.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

Note

1) The acceleration and deceleration values are multiples of 125.

2) The speed cannot be changed during acceleration/deceleration.

-295-

Chapter 6 Inovance Instruction Library

3) Ensure that the positioning distance value does not exceed 2147483647. Otherwise, the device runs in
the reverse direction.

4) S-shaped curve: The jerk is calculated internally. All jerk parameters are calculated internally.

5) S-shaped curve: The speed, acceleration, and deceleration cannot be calculated during motion.

6) S-shaped curve: When the deceleration is equal to or greater than the speed multiplied by 5, no
smearing or truncation occurs.

 ■ MC_Stop_P

Figure 6-22 Diagram of the MC_Stop_P function block

Table 6-26 Table of MC_Stop_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Execute Bool In Indicates the enabling bit, triggered by rising edges.

Deceleration DWORD In

Indicates the deceleration, in the unit of pulse/s². The
maximum value is 20000000 by default. It can be modified
through dwMaxDeceleration.

Note

1. See remarks.

2. When the deceleration is 0, the device immediately stops.

Jerk DWORD In Indicates the jerk, in the unit of pulse/s³.

Done Bool Out Indicates the execution complete flag.

Busy Bool Out Indicates the execution status flag.

CommandAborted Bool Out
Indicates that the command is interrupted by other
commands.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

Note

1) The acceleration and deceleration values are multiples of 125.

2) S-shaped curve: When the deceleration is equal to or greater than the speed multiplied by 5, no
smearing or truncation occurs.

-296-

Chapter 6 Inovance Instruction Library

3)

 ■ MC_Reset_P

Figure 6-23 Diagram of the MC_Reset_P function block

Table 6-27 Table of MC_Reset_P I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Execute Bool In Indicates the enabling bit, triggered by rising edges.

Done Bool Out Indicates the execution complete flag.

Busy Bool Out Indicates the execution status flag.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

 ■ MC_Power_P

Obtain parameters in the programming software and configure the basic FPGA register.

Figure 6-24 Diagram of the MC_Power_P function block

Table 6-28 Table of MC_Power_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Enable Bool In Indicates the enabling bit, triggered by level.

Status Bool Out Indicates the execution status flag.

Valid Bool Out Indicates the execution valid flag.

AxisOn Bool Out Enables the axis.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

 ■ MC_ReadParameter_P

Figure 6-25 Diagram of the MC_ReadParameter_P function block

-297-

Chapter 6 Inovance Instruction Library

Table 6-29 Table of MC_ReadParameter_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Enable Bool In Enables the function block.

ParameterNumber Dint In Indicates the parameter number.

Valid Bool Out Indicates the execution valid flag.

Busy Bool Out Indicates the execution status flag.

Value Dint Out Indicates the returned value.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

Table 6-30 PN parameter mapping table

PN Name DataByte R/W Comments

10030 diSWLimitPos dint R/W Indicates the maximum soft limit.

10031 diSWLimitNeg dint R/W Indicates the minimum soft limit.

10032 bEnableLimitPos Bool R/W Indicates the minimum enable soft limit (0: False).

10033 bEnableLimitNeg Bool R/W Indicates the maximum enable soft limit (0: False).

10034 Velocity dint R Indicates the actual speed.

10035 Position dint R Indicates the actual position.

10036 dwMaxAcceleration dword R/W Indicates the maximum acceleration.

10037 dwMinAcceleration dword R/W Indicates the minimum acceleration.

10038 dwMaxDeceleration dword R/W Indicates the maximum deceleration.

10039 dwMinDeceleration dword R/W Indicates the minimum deceleration.

10040 dwMaxVelocity Dint R/W Indicates the maximum speed.

10041 dwHomeVelocity dword R/W Indicates the homing speed.

10042 dwHomeCreepVelocity dword R/W Indicates the homing creep speed.

10043 dwHomeAcceleration dword R/W Indicates the homing acceleration.

10044 dwHomeDeceleration dword R/W Indicates the homing deceleration.

10045 bHomeMode Byte R/W Indicates the homing mode, [0, 3].

10046 bErrorStopMode Bool R/W
Indicates the stop mode when an axis error occurs (0:
False).

10046 bSoftLimitStopMode Bool R/W Indicates the stop mode for soft limit (0: False).

 ■ MC_WriteParameter_P

Figure 6-26 Diagram of the MC_WriteParameter_P function block

-298-

Chapter 6 Inovance Instruction Library

Table 6-31 Table of MC_WriteParameter_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Execute Bool In Indicates the enabling bit, triggered by rising edges.

ParameterNumber Dint In Indicates the parameter number.

Value Dint In Indicates the parameter value.

Done Bool Out Indicates the execution complete flag.

Busy Bool Out Indicates the execution status.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

Table 6-32 PN parameter mapping table

PN Name DataByte R/W Comments

10030 diSWLimitPos dint R/W
Indicates the maximum soft limit.

Note: It is the actual limit value. An error is reported at this
position.

10031 diSWLimitNeg dint R/W
Indicates the minimum soft limit.

Note: It is the actual limit value. An error is reported at this
position.

10032 bEnableLimitPos Bool R/W Indicates the maximum enable soft limit (0: False).

10033 bEnableLimitNeg Bool R/W Indicates the minimum enable soft limit (0: False).

10036 dwMaxAcceleration dword R/W Indicates the maximum acceleration.

10037 dwMinAcceleration dword R/W Indicates the minimum acceleration.

10038 dwMaxDeceleration dword R/W Indicates the maximum deceleration.

10039 dwMinDeceleration dword R/W Indicates the minimum deceleration.

10041 dwHomeVelocity dword R/W Indicates the homing speed.

10042 dwHomeCreepVelocity dword R/W Indicates the homing creep speed.

10043 dwHomeAcceleration dword R/W Indicates the homing acceleration.

10044 dwHomeDeceleration dword R/W Indicates the homing deceleration.

10045 bHomeMode Byte R/W Indicates the homing mode, [0, 3].

10046 bErrorStopMode Bool R/W
Indicates the stop mode when an axis error occurs (0: Stop
by deceleration; 1: Stop immediately).

10047 bSoftLimitStopMode Bool R/W
Indicates the stop mode for soft limit (0: Stop by
deceleration; 1: Stop immediately).

 ■ MC_SetPosition_P

Set a logical address.

Figure 6-27 Diagram of the MC_SetPosition_P function block

-299-

Chapter 6 Inovance Instruction Library

Table 6-33 Table of MC_SetPosition_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Execute Bool In Indicates the enabling bit, triggered by rising edges.

Position Dint In Address

Relative Bool In
0: Absolute position of the logical address; 1: Relative
position of the logical address

Done Bool Out Indicates the execution complete flag.

Busy Bool Out Indicates the execution status flag.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

Note: 1. When a program is downloaded, the current position value is not zeroed.

 ■ MC_ReadStatus_P

Figure 6-28 Diagram of the MC_ReadStatus_P function block

Table 6-34 Table of MC_ReadStatus_P function block I/O parameters

Parameter Name Parameter Type I/O Type Description

Axis HS_AXIS_REF In Indicates the instruction axis number, ranging from 0 to 3.

Enable Bool In Indicates the enabling bit, triggered by level.

Valid Bool Out Indicates the execution valid flag.

Busy Bool Out Indicates the execution status flag.

Error Bool Out Indicates the axis error flag.

ErrorID Uint Out Indicates the error code.

ErrorStop Bool Out Indicates the error stop mode.

Disabled Bool Out Indicates that the mode is invalid.

Stopping Bool Out Indicates the stopping mode.

Homing Bool Out Indicates the homing mode.

Standstill Bool Out Indicates the standstill mode.

DiscreteMotion Bool Out Indicates the positioning mode.

ContinuousMotion Bool Out Indicates the speed mode.

ConstantVelocity Bool Out Indicates that the device is moving at constant speed.

Accelerating Bool Out Indicates that the device is accelerating.

-300-

Chapter 6 Inovance Instruction Library

Parameter Name Parameter Type I/O Type Description

Decelerating Bool Out Indicates that the device is decelerating.

FBErrorOccured Bool Out Indicates a function block error.

FBErrorID Dword Out Indicates the function block error code.

2 State Machine

Note 1: From any state. An error in the axis occurred. Reference 2.3

Note 2: From any state. MC_Power.Enable = FALSE and there is no error in the axis.

Note 3: MC_Reset AND MC_Power.Status = FALSE

Note 4: MC_Reset AND MC_Power.Status = TRUE AND MC_Power.Enable = TRUE

Note 5: MC_Power.Enable = TRUE AND MC_Power.Status = TRUE

Note 6: MC_Stop.Done = TRUE AND MC_Stop.Execute = FALSE

Note7: MC_Jog only join Continuous Motion.

#define PMC_AS_Disabled 0

#define PMC_AS_ErrorStop 1

#define PMC_AS_Stopping 2

#define PMC_AS_Standstill 3

#define PMC_AS_DiscreteMotion 4

#define PMC_AS_ContinuousMotion 5

#define PMC_AS_Homing 7

3 ErrorID

Basic format:

Library + function block + error code

3 3-bit

Library: The default high-speed I/O is 0.

Function block number: Function blocks are numbered from 01. Function blocks are detailed in 6.2.4. List
of Function Blocks.

-301-

Chapter 6 Inovance Instruction Library

Error code: The error code starts from 01. Error codes are detailed in the list of counter error codes. If the
error code is less than 500, it indicates a serious error. If the error code is greater than 500, it indicates a
function block error.

In the example of 31520, 31 indicates MC_WriteParameter_P, and 520 indicates a parameter error.

Table 6-35 List of high-speed axis error codes
Indicates the

error code.
Definition Description

001 ERR_NOT_POWER MC_Power is not enabled.

002 ERR_UP_SOFTWARE_LIMIT
The current position is beyond the software stroke
limit (Up).

003 ERR_DOWN_SOFTWARE_LIMIT
The current position is beyond the software stroke
limit (Down).

004 ERR_AXIS_FUNC_UNUSED
The high-speed axis is not enabled. Enable the axis in
the programming software.

005 ERR_INPUT_CHANNAL_NUM_INVALID
The axis number is invalid. A valid number ranges
from 0 to 3.

006 ERR_DEST_POS_OVER_SOFT_UP_LIMIT
The target position is beyond the upper software
limit.

007 ERR_DEST_POS_OVER_SOFT_DOWN_LIMIT
The target position is beyond the lower software
limit.

010 ERR_POS_DECPOINT_OVERLOW
The deceleration point is invalid: In position mode,
when the device is repositioned, the deceleration
length is greater than the actual distance.

011 ERR_VEL_DECPOINT_OVERLOW

The deceleration point is invalid: When you switch
from the speed mode to the position mode, the
deceleration length is greater than the actual
distance.

012 ERR_POS_PLSNUM_OVERLOW
The maximum PLSNUM positioning length
2147483647 is exceeded.

013 ERR_POS_DECPOINT2_OVERLOW
An error occurred while recomputing the deceleration
point.

501 ERR_ACC_SET_OVERFLOW
The acceleration exceeds the maximum value set by
MC_WriteParameter_P.

502 ERR_ACC_SET_LOW
The acceleration is below the minimum value set by
MC_WriteParameter_P.

503 ERR_DEC_SET_OVERFLOW
The deceleration exceeds the maximum value set by
MC_WriteParameter_P.

504 ERR_DEC_SET_LOW
The deceleration is below the minimum value set by
MC_WriteParameter_P.

505 ERR_VEL_SET_OVERFLOW
The set speed is out of range. Set the speed
in the programming software or through MC_
WriteParameter_P.

506 ERR_VEL_SET_LOW The set speed is too low.

508 ERR_VEL_LESS_THAN_STARTVEL
The speed is less than the startup offset speed.
Set the startup offset speed in the programming
software.

509 ERR_STARTVEL_SET_LOW The starting speed is too small.

510 ERR_FBD_MOVEMODE_INVALIAD The motion mode of the function block is invalid.

-302-

Chapter 6 Inovance Instruction Library

Indicates the
error code.

Definition Description

511 ERR_WASNT_STANDSTILL The axis is not in Standstill state.

512 ERR_WASNT_DISABLED The axis is not in Disabled state.

513 ERR_IN_ERRORSTOP The axis is in ErrorStop state.

514 ERR_NOT_READY_FOR_MOTION The axis is not prepared to run.

515 ERR_INVLALID_VELOCITY_MODE The speed mode is invalid.

516 ERR_INVLALID_POSTION_MODE The position mode is invalid.

520 ERR_AXIS_WRITEPARAMETER_UNVALIAD The MC_WriteParameter_P parameter is invalid.

521 ERR_AXIS_READPARAMETER_UNVALIAD The MC_ReadParameter_P parameter is invalid.

522 ERR_HOME_MODE_UNVALIAD
The homing mode is invalid. Select a valid mode in
the programming software.

523
ERR_AXIS_WRITEPARAMETER_HOME_
MODE_UNVALIAD

The homing mode is invalid.

Errors can be classified into axis errors and function block errors.

Conditions for setting the axis in ErrorStop state:

1) Axis errors occur.

2) Function block errors occur when the axis is in DiscreteMotion, ContinuousMotion, or Homing state.

4 Timing for Speed Variation

Mode
Trapezoid Acceleration/Deceleration Mode S-shaped Acceleration/Deceleration Mode

Accelerating Constant speed Decelerating Accelerating Constant speed Decelerating

Indicates the
speed mode.

The speed can
be changed.

--- --- --- ---

Position
Mode

The speed can
be changed.

--- --- --- ---

Speed >
position

The speed can
be changed.

--- --- --- ---

Position >
speed

The speed can
be changed.

--- --- --- ---

Indicates
the homing
mode.

--- --- --- --- --- ---

JOG --- --- --- --- --- ---

6.2.3 External Interrupt

1) The frequency 1 kHz is recommended. The limit input frequency is 3 kHz.

2) If the frequency of external input interrupts is too high, the system may not respond.

-303-

Chapter 6 Inovance Instruction Library

6.2.4 List of Function Blocks

Item Name No.

Counting

HC_Counter 1

HC_SetCompare 2

HC_PresetValue 3

HC_ControlInterrupt 4

HC_TouchProbe 5

HC_MeasurePulseWidth 6

HC_Sample 7

HC_ReadBoolParameter 8

HC_WriteBoolParameter 9

HC_SetCompareM 10

HC_SetRing 11

HC_ResetCmpOutput 12

HC_ReadParameter 13

HC_WriteParameter 14

HC_WriteInterruptParameter 15

HC_Reset 16

Axis

Axis 20

MC_Power_P 21

MC_MoveAbsolute_P 22

MC_MoveRelative_P 23

MC_MoveVelocity_P 24

MC_Stop_P 25

MC_Home_P 27

MC_Jog_P 28

MC_Reset_P 29

MC_ReadParameter_P 30

MC_WriteParameter_P 31

MC_SetPosition_P 32

MC_ReadStatus_P 33

6.2.5 7-segment LED Display

High-speed I/O 7-segment LED Display Definition

60 High-speed input error

62 High-speed output error

64
External interrupt and coincident
interrupt errors

-304-

Chapter 6 Inovance Instruction Library

6.3 CANopen

6.3.1 CiA405

Function overview: Function blocks comply with CANopen communication and CiA405 standards, and
support IEC61131-3. SDO read/write access, NMT state machine, emergency event packets, device node
ID, and communication state machines of the slave are included.

Library name: CmpHCCiA405 (applicable to V0.1.2.1 and later versions)

1 CiA405 Overview

The CANopen interface and device configuration file for an IEC 61131-3 PLC (CiA405) describes two ways
of accessing CANopen networks on the PLC: network variables and function blocks.

Network variables are usually mapped to PDOs to be received or transmitted. In an object dictionary, you
can access IEC 61131-3 variables in the defined index range.

In addition, function blocks intended for CANopen are defined in the configuration file, for example, SDO,
NMT, and emergency communication service.

The CAA CiA 405 library provides a group of function blocks for CiA405 to access CANopen networks
through the application program (IEC61131-3 program) of the PLC (CANopen master). After the CANopen
manager is added to the CAN bus interface of the PLC, the library manager of the PLC automatically
declares the library.

In the library, organize function blocks as follows:

 ■ Network management function block

CIA405 .NMT: Controls the NMT state of a CANopen device.

CIA405 .RECV_EMCY: Scans EMCY storage of all devices.

CIA405 .RECV_EMCY_DEV: Obtains the last storage EMCY message from a specified device.

 ■ Self-owned node ID function block

CIA405 .GET_LOCAL_NODE_ID: Obtains the PLC CANopen manager node ID.

State query function block

CIA405 .GET_CANOPEN_KERNEL_STATE: Obtains the current state of the CANopen kernel.

CIA405 .GET_STATE: Obtains the current state of a specified device.

 ■ SDO access function block

CIA405 .SDO_READ: Reads objects of any size on specified devices.

CIA405 .SDO_READ4: Reads objects of no more than four bytes on specified devices.

CIA405 .SDO_WRITE: Writes objects of any size on specified devices.

CIA405 .SDO_WRITE4: Writes objects of no more than four bytes on specified devices.

2 Description of Function Blocks

General-purpose I/O and behaviors of function blocks

This section uses the CIA405 .RECV_EMCY function block as an example to describe regular management
and execution of function blocks of the CAA CiA 405 library. The following describes I/O applicable to all
function blocks. The function blocks are inherited from hidden function blocks of CiA405Base.

-305-

Chapter 6 Inovance Instruction Library

The following figure highlights the parameters shared by all function blocks of the CAA CiA 405 library.

The following table describes input parameters and output variables shared by all function blocks of the
CAA CiA 405 library.

Parameter Name Parameter Type
Initial
Value

Description

VAR_IN

NETWORK USINT 1

Indicates the CAN channel on which requested services must be
implemented.

1 (default): the first CAN bus interface

2: the second CAN bus interface (if any)

ENABLE BOOL FALSE

Enables the function block.

Rising edge: Start the execution.

Falling edge: If the execution is not finished, cancel the execution.
Otherwise, output data is reset to 0.

TIMEOUT UDINT 0

Indicates the maximum execution time, in the unit of ms. If the
execution times out before response is received, the execution is
aborted because of timeout.

0 (default): timeout disabled

1 to 65535: timeout value, in the unit of ms.

VAR_OUT

CONFIRM BOOL FALSE It is set to TRUE when the execution is completed.

ERROR
CANOPEN_
KERNEL_ERROR

(USINT)
0

The execution of error codes returned from the CANopen kernel
is included.

00 (hexadecimal): No execution errors are detected.

01 (hexadecimal): Errors are detected, but error codes are
available on another function block rather than the CANopen
kernel.

02 to FF (hexadecimal): Indicates error codes detected by the
CANopen kernel.

-306-

Chapter 6 Inovance Instruction Library

Error codes detected by the CANopen kernel

The following table lists error codes and describes associated global variables.

Detected Error Code Description

CANOPEN_KERNEL_NO_ERROR = 00 (hexadecimal) No error codes are detected by the CANopen kernel.

CANOPEN_KERNEL_OTHER_ERROR = 01
(hexadecimal)

If ERROR is 01 (hexadecimal), errors are detected.

If other error codes are output on the function block, specific
data is included.

Example:

CIA405 .SDO_READ and CIA405.SDO_WRITE function blocks:
The ERRORINFO output includes an SDO abortion message.

CIA405 .RECV_EMCY and CIA405.RECV_EMCY_DEV function
blocks: The ERRORINFO output includes received EMCY
messages. If the ERRORINFO output includes EMCY messages,
ERROR is 1 and CONFIRM is 0.

CIA405 .GET_CANOPEN_KERNEL_STATE function block: No
hexadecimal 01 value is provided because no other error
codes are output.

CANOPEN_KERNEL_DATA_OVERFLOW = 02

(hexadecimal)
The CANopen object sending buffer or receiving buffer
overflows.

CANOPEN_KERNEL_TIMEOUT = 03 (hexadecimal) The function block execution timed out.

CANOPEN_KERNEL_CANBUS_OFF = 10
(hexadecimal)

CANopen nodes are disconnected from the CAN bus.

CANOPEN_KERNEL_CAN_ERROR_PASSIVE = 11
(hexadecimal)

CANopen nodes in passive state: Nodes can communicate but
are not allowed to send motion error flags when errors are
detected.

CANOPEN_INTERNAL_FB_ERROR = 21
(hexadecimal)

Indicates specific manufacturer error codes.

Note: 21 (hexadecimal) to FF (hexadecimal) are dedicated for
device manufacturers.

Diagram of the function block execution

Behaviors of control signals

The following describes three typical behaviors of ENABLE, CONFIRM, and ERROR control signals.

 ■ The execution ends when no errors are detected.

 ■ The execution is canceled by application programs.

 ■ The execution is aborted or ends when errors are detected.

The execution ends when no errors are detected.

When the system responds to the current request and no errors are detected, CONFIRM is set to TRUE,
which is reserved (provided that the function block is called when ENABLE is set to TRUE). If the function
block is called when ENABLE is reset to FALSE, CONFIRM is reset to FALSE, and the function block can be
executed again.

-307-

Chapter 6 Inovance Instruction Library

The execution is canceled by application programs.

Before the current execution ends, if the function block is called when ENABLE is reset to FALSE, the
function block execution is canceled. The system may have responded to the canceled request or the
response will be received later. However, the response is ignored.

The execution is aborted or ends when errors are detected.

If the current execution is aborted because an SDO abortion message is received or errors are detected,
ERROR is set to a non-zero value (for more details about detected error codes, see "Error codes detected
by the CANopen kernel" on page 28). If the function block is called when ENABLE is reset to FALSE,
ERROR is reset to 0, and the function block can be executed again.

-308-

Chapter 6 Inovance Instruction Library

3 Network Management Function Block

1) Device NMT state management

Description of function blocks

 NMT Status Management

You can use the CIA405 .NMT function block to control the NMT state of a CANopen
device through PLC application programs. The function block executes NMT service
requests for target CANopen devices to implement request NMT state transition.

Description of specific input parameters and output variables

Parameter Name Parameter Type Initial Value Description

VAR_IN

DEVICE DEVICE(USINT) 0

Indicates the target CANopen device node ID.

0 (default): all NMT slaves

1 to 127: target CANopen device node ID

STATE TRANSITION_STATE FALSE Indicates request NMT state transition.

VAR_OUT

None None None None

Graphic format

CIA405 .TRANSITION_STATE ENUM

The NMT state machine describes initialization and status of NMT slaves.

The following figure shows the NMT state, associated communication objects available (PDO, SDO, SYNC,
EMCY, and NMT), and transition of five states (A to E).

-309-

Chapter 6 Inovance Instruction Library

CIA405 .TRANSITION_STATE enumerated types include the NMT state transition command, as described in
the following table.

Enumerator
(hexadecimal)

Value
(hexadecimal)

Description

STOP_REMOTE_NODE 0004 Switch to the Stopped state (transition B).

START_REMOTE_NODE 0005 Switch to the operational state (transition A).

RESET_NODE 0006
Switch to the application program reset state. Load saved data of
the device configuration file and automatically switch from the
communication reset state to pre-operation state (transition D).

RESET_COMMUNICATION 0007
Switch to the communication reset state. Load stored data of the
communication configuration file and automatically switch from the
communication reset state to pre-operation state (transition E).

ENTER_PRE_
OPERATIONAL

007F Switch to the pre-operation state (transition C).

ALL_EXCEPT_NMT_AND_
SENDER

0800 Not implemented (invalid parameter)

Example

The following example describes how to send the "reset command" to the CANopen node 5 connected
to the first CAN bus interface when the timeout is 1 second (1,000 ms). The command is sent when the
Boolean variable EN_ResetNode is set to TRUE (set by users online or by application programs). When the
execution succeeds (CONFIRM = TRUE) or errors are detected (ERROR <> 0), the EN_ResetNode command
is reset to FALSE.

2) EMCY message scan

Description of function blocks

RECV_EMCY Message Scan

The CIA405.RECV_EMCY function block scans all EMCY messages stored on all
existing CANopen devices in a cycle and returns EMCY messages found.

Description of specific input parameters and output variables

Parameter Name Parameter Type Initial Value Description

VAR_IN

None None None None

VAR_OUT

DEVICE DEVICE(USINT) 0

Indicates the node ID of a CANopen device associated with the
returned EMCY message.

0: no EMCY messages found

1 to 127: CANopen device node ID

ERRORINFO
CS.EMCY_
ERROR

0
Indicates the last EMCY message received from the CANopen
device whose node ID is DEVICE.

-310-

Chapter 6 Inovance Instruction Library

Graphic format

NOTE

 ◆ After the function block is enabled, EMCY storage scan starts from the last scan stop point.
 ◆ If an EMCY message other than the No Error message is found, scan ends at this point, and the
function block returns the EMCY message and the node ID of an associated device.

 ◆ If an EMCY message indicating no error is found but the message was not a No Error message,
scan ends at this point, and the function block returns an EMCY message whose value is 0 and the
node ID of an associated device.

 ◆ If no EMCY messages other than the No Error message are generated and no new No Error
message is found in a complete scan process, the function block returns an EMCY message whose
value is 0 and a device node ID whose value is 0.

3) Obtaining device EMCY messages

Description of function blocks

RECV_EMCY_DEV Obtaining device EMCY messages

The CIA405 .RECV_EMCY_DEV function block returns the last storage
EMCY message received from a specified CANopen device.

Description of specific input parameters and output variables

Parameter
Name

Parameter Type
Initial
Value

Description

VAR_IN

DEVICE DEVICE(USINT) 0

Indicates the node ID of a CANopen device to be checked.

0 (default): local device (PLC)

1 to 127: CANopen device node ID

VAR_OUT

ERRORINFO CS.EMCY_ERROR 0
Indicates the last EMCY message received from the CANopen device
whose node ID is DEVICE.

Graphic format

CS.EMCY_ERROR structure

CS.EMCY_ERROR is associated with EMCY messages, including the following elements.

Element Type Description

EMCY_ERROR_CODE Word Indicates the error code of an EMCY message.

ERROR_REGISTER Byte Indicates the error register of an EMCY message (bit field).

ERROR_FIELD ARRAY[1...5] OF BYTE
Indicates the specific device manufacturer error field of an
EMCY message.

NOTE

The structure is declared in the CAA CANopen stack library (namespace = CS). Therefore, you need to
use the full name (<namespace>.<data type>). The namespace of the CAA CiA 405 library is CIA405.

-311-

Chapter 6 Inovance Instruction Library

4 Self-owned Node ID Function Block

Obtain the PLC CANopen node ID.

Description of function blocks

GET_LOCAL_NODE_ID Obtaining the PLC Node ID

The CIA405 .GET_LOCAL_NODE_ID function block returns the ID of the PLC
CANopen node connected to a specified CAN bus interface.

Graphic format

Description of specific input parameters and output variables

Parameter
Name

Parameter Type Initial Value Description

VAR_IN
None None None None

VAR_OUT

DEVICE DEVICE(USINT) 0

Indicates the PLC CANopen node ID.

0: invalid

1 to 127: PLC Node ID

Graphic format

5 State Query Function Block

1) Obtaining the CANopen kernel state

Description of function blocks

GET_CANOPEN_KERNEL_STATE Obtaining the Kernel State
The CIA405 .GET_CANOPEN_KERNEL_STATE function returns the current state of
the PLC CANopen kernel.

Description of specific input parameters and output variables

Parameter
Name

Parameter Type Initial Value Description

VAR_IN
None None None None

VAR_OUT

STATE
CANOPEN_KERNEL_
ERROR

Indicates the current state of the PLC CANopen kernel.

DEVICE DEVICE(USINT) 0

Indicates the PLC CANopen node ID.

0: invalid

1 to 127: PLC Node ID

Graphic format

-312-

Chapter 6 Inovance Instruction Library

2) Obtaining the CANopen device state

Description of function blocks

GET _STATE Obtaining the Device State
The CIA405 .GET_STATE function block returns the current NMT state of a specified
CANopen device when heartbeat or node protection is activated.

Description of specific input parameters and output variables

Parameter
Name

Parameter
Type

Initial
Value

Description

VAR_IN

DEVICE DEVICE(USINT) 0

Indicates the node ID of a CANopen device to be checked.

0 (default): local device (PLC)

1 to 127: CANopen device node ID
VAR_OUT

STATE DEVICE_STATE 0 Indicates the NMT state of a CANopen device.

Graphic format

CIA405.DEVICE_STATE ENUM

CIA405 .DEVICE_STATE enumerated types include a list of CANopen device NMTstates.

Enumerator
(hexadecimal)

Value Description

INIT 0 Initializing state
RESET_COMM 1 Communication reset state
RESET_APP 2 Application program reset state
PRE_OPERATIONAL 3 Pre-operation state
STOPPED 4 Stopped state
OPERATIONAL 5 Operational state

UNKNOWN 6
Unknown NMT state

The node protection or heartbeat function of the selected device is not activated,
or the PLC is not a heartbeat consumer.

NOT_AVAIL 7
NMT state not available

The node protection or heartbeat function of the selected device is activated, but
the device fails to report its NMT state correctly before timeout.

Example

The following example describes how to obtain the state of the CANopen node 5 connected to the
first CAN bus interface when the timeout is 1 second (1,000 ms). The CIA405.GET_STATE function is
automatically executed to read the state continuously. The device NMT state is copied to DeviceState
variables of the CIA405.DEVICE_STATE type.

-313-

Chapter 6 Inovance Instruction Library

6 SDO Access Function Block

1) Reading CANopen objects of any size

Description of function blocks

 SDO_READ
Reading CANopen objects of

any size

The CIA405 .SDO_READ function block reads CANopen objects of any size on
specified devices through SDO messages.

Description of specific input parameters and output variables

Parameter Name Parameter Type
Initial
Value

Description

VAR_IN

DEVICE
DEVICE

(USINT)
0

Indicates the node ID of a CANopen device.

0 (default): local device (PLC)

1 to 127: CANopen device node ID

CHANNEL USINT 1
Indicates the SDO channel number.

The number is 1 by default.

INDEX WORD 0
Indicates the object index.

The value ranges from 0000 (hexadecimal) to FFFF
(hexadecimal).

SUBINDEX BYTE 0
Indicates the object subindex.

The value ranges from 00 (hexadecimal) to FF (hexadecimal).

DATA POINTER TO BYTE NULL
Receives the data buffer address read from a device object.

You need to use ADR standard functions to define the
association pointer.
VAR_OUT

ERRORINFO SDO_ERROR (UDINT) 0
When ERROR is 1, an SDO abortion message (4 bytes) is
returned.

VAR_IN/ VAR_OUT

DATALENGTH UINT 0

Input: Indicates the data buffer size (in the unit of bytes).

Note: Use the SIZEOF standard function to initialize the
DATALENGTH input correctly (when the function block
execution is started at the rising edge through which ENABLE is
input) to match the data buffer size.

Output: Indicates the size of a read object (in the unit of bytes).

Graphic format

Example

The following example describes how to read the object index 203C (hexadecimal)/subindex 02
(hexadecimal) of the CANopen node 5 connected to the first CAN bus interface when the timeout is 1
second (1,000 ms). The CIA405.SDO_READ function block instance (ReadObject) is automatically executed
for continuous reading.

Variable DataSize (UINT type):

-314-

Chapter 6 Inovance Instruction Library

It is initialized match the data buffer size (DataBuffer: N-byte array) (when ENABLE is FALSE and before
the next execution is started).

The size of data read at the rising edge through which CONFIRM is output (in the unit of bytes) (the
example does not demonstrate how to extract values from the data buffer or how to manage error
detection) is included.

NOTE

The following parameters must be transmitted to the function block:

1) Device node ID
2) SDO client/server channel (by default, only one channel is defined)
3) CANopen object index/subindex
4) Pointer of the data buffer used to store object values
5) Data buffer size
If Read operation succeeds, the function block returns the size of the read object. Data is available in
the data buffer.

If the object to be read contains four or less bytes, the CIA405.SDO_READ4 function block is
recommended.

6) Reading CANopen Objects of No More Than Four Bytes

Description of function blocks

 SDO_READ4
Reading CANopen Objects of No

More Than Four Bytes

The CIA405 .SDO_READ4 function block reads CANopen objects of no more
than four bytes on specified devices through SDO messages.

Description of specific input parameters and output variables

Parameter Name Parameter Type
Initial
Value

Description

VAR_IN

DEVICE DEVICE (USINT) 0

Indicates the node ID of a CANopen device.

0 (default): local device (PLC)

1 to 127: CANopen device node ID

CHANNEL USINT 1
Indicates the SDO channel number.

The number is 1 by default.

INDEX WORD 0
Indicates the object index.

The value ranges from 0000 (hexadecimal) to FFFF (hexadecimal).

SUBINDEX BYTE 0
Indicates the object subindex.

The value ranges from 00 (hexadecimal) to FF (hexadecimal).

-315-

Chapter 6 Inovance Instruction Library

Parameter Name Parameter Type
Initial
Value

Description

VAR_OUT

DATA
ARRAY[1...4] OF

BYTE
0 Receives the data array read from a device object.

DATALENGTH USINT 0 Indicates the size of a read object (in the unit of bytes).

ERRORINFO
SDO_ERROR

(UDINT)
0 When ERROR is 1, an SDO abortion message (4 bytes) is returned.

Graphic format

The following table lists object sizes and corresponding DATA arrays.

Object Size Example DATALENGTH DATA(1) DATA(2) DATA(3) DATA(4)

1-byte

01 (hexadecimal)
1 01 (hexadecimal) Invalid Invalid Invalid

2-byte

01 23 (hexadecimal)
2

LSB

23 (hexadecimal)

MSB

01 (hexadecimal)
Invalid Invalid

3-byte

01 23 45

(hexadecimal)

3
LSB

45 (hexadecimal)
23 (hexadecimal)

MSB

01 (hexadecimal)
Invalid

4-byte

01 23 45 67

(hexadecimal)

4
LSB

67 (hexadecimal)
45 (hexadecimal) 23 (hexadecimal)

MSB

01 (hexadecimal)

LSB = least significant bit

MSB = most significant bit

Example

The following example describes how to read the object index 203C (hexadecimal)/subindex 02
(hexadecimal) of the CANopen node 5 connected to the first CAN bus interface when the timeout is
1 second (1,000 ms). The CIA405.SDO_READ4 function block instance (Read4Object) is automatically
executed for continuous reading. The variable DataBuffer (4-byte array) includes the value of data last
read. The variable DataSize (USINT type) includes the size of data last read (maximum: 4 bytes). The
example does not demonstrate how to manage error detection.

-316-

Chapter 6 Inovance Instruction Library

NOTE

The following parameters must be transmitted to the function block:

1) Device node ID
2) SDO client/server channel (by default, only one channel is defined)
3) CANopen object index/subindex
If Read operation succeeds, the function block returns the size of the read object. Data is available in
a 4-byte array.

4) Writing CANopen objects of any size

Description of function blocks

SDO_WRITE Writing CANopen objects of any size

The CIA405 .SDO_WRITE function block writes CANopen objects of any size
on specified devices through SDO messages.

Description of specific input parameters and output variables

Parameter Name Parameter Type
Initial
Value

Description

VAR_IN

DEVICE DEVICE (USINT) 0

Indicates the node ID of a CANopen device.

0 (default): local device (PLC)

1 to 127: CANopen device node ID

CHANNEL USINT 1
Indicates the SDO channel number.

The number is 1 by default.

INDEX WORD 0
Indicates the object index.

The value ranges from 0000 (hexadecimal) to FFFF (hexadecimal).

SUBINDEX BYTE 0
Indicates the object subindex.

The value ranges from 00 (hexadecimal) to FF (hexadecimal).

MODE SDO_MODE 0
Indicates the data transmission mode.

0 (default) = AUTO (automatic mode selection)

DATA POINTER TO BYTE NULL

Stores the address of the data buffer for object values to be
written.

You need to use ADR standard functions to define the association
pointer.

DATALENGTH UINT 0 Indicates the size of an object to be written (in the unit of bytes).

VAR_OUT

ERRORINFO
SDO_ERROR
(UDINT)

0 When ERROR is 1, an SDO abortion message (4 bytes) is returned.

Graphic format

CIA405 .SDO_MODE ENUM

CIA405 .SDO_MODE enumerated types include a list of SDO transmission modes.

-317-

Chapter 6 Inovance Instruction Library

Enumerator
(hexadecimal)

Value Description

AUTO 0 Indicates automatic mode selection.

EXPEDITED 1
Indicates the SDO acceleration mode for data of no more than four bytes.

Data is sent in response to an SDO request.

SEGMENTED 2
Indicates the SDO segmentation mode for data of more than four bytes.

Data is segmented into 7-byte segments and sent through continuous SDO
confirmation requests.

BLOCK 3

Indicates the SDO block mode for data of more than four bytes.

Data sent through continuous frames is segmented into 7-byte data blocks. These
blocks are not confirmed. Upon receipt of all blocks, the recipient sends confirmation.

Note: This mode allows quick transmission, but your device may not support the
mode. Therefore, the mode is a CANopen configuration item recently added.

NOTE

The following parameters must be transmitted to the function block:

1) Device node ID
2) SDO client/server channel (by default, only one channel is defined)
3) CANopen object index/subindex
4) SDO mode
5) Pointer used to store the data buffer for object values to be written
6) Number of bytes to be written
If the object to be written contains four or less bytes, use the CIA405.SDO_WRITE4 function block.

7) Writing CANopen Objects of No More Than Four Bytes

Description of function blocks

 SDO_WRITE4
Writing CANopen Objects of No More

Than Four Bytes

The CIA405 .SDO_WRITE4 function block writes CANopen objects of no
more than four bytes on specified devices through SDO messages.

Description of specific input parameters and output variables

Parameter Name Parameter Type
Initial
Value

Description

VAR_IN

DEVICE DEVICE (USINT) 0

Indicates the node ID of a CANopen device.

0 (default): local device (PLC)

1 to 127: CANopen device node ID

CHANNEL USINT 1
Indicates the SDO channel number.

The number is 1 by default.

INDEX WORD 0
Indicates the object index.

The value ranges from 0000 (hexadecimal) to FFFF
(hexadecimal).

SUBINDEX BYTE 0
Indicates the object subindex.

The value ranges from 00 (hexadecimal) to FF (hexadecimal).
DATA ARRAY[1...4] OF BYTE 0 Stores the data array of the object value to be written.

DATALENGTH USINT 0
Indicates the size of an object to be written (in the unit of
bytes).

VAR_OUT

ERRORINFO SDO_ERROR (UDINT) 0
When ERROR is 1, an SDO abortion message (4 bytes) is
returned.

-318-

Chapter 6 Inovance Instruction Library

Graphic format

The following table lists object sizes and corresponding DATA arrays.

Object Size

Example
DATALENGTH DATA(1) DATA(2) DATA(3) DATA(4)

1-byte

01 (hexadecimal)
1 01 (hexadecimal) Invalid Invalid Invalid

2-byte

01 23 (hexadecimal)
2

LSB

23 (hexadecimal)

MSB

01 (hexadecimal)
Invalid Invalid

3-byte

01 23 45
(hexadecimal)

3
LSB

45 (hexadecimal)
23 (hexadecimal)

MSB

01 (hexadecimal)
Invalid

4-byte

01 23 45 67
(hexadecimal)

4
LSB

67 (hexadecimal)
45 (hexadecimal) 23 (hexadecimal)

MSB

01 (hexadecimal)

LSB = least significant byte

MSB = most significant byte

NOTE

The following parameters must be transmitted to the function block:

1) Device node ID
2) SDO client/server channel (by default, only one channel is defined)
3) CANopen object index/subindex
4) Values to be written
5) Number of bytes to be written (object size)

7 Terminology

Name Definition

CAN CAN is a serial bus system designed for embedded control.

CANopen
CANopen is a CAN-based high-level protocol used for embedded control systems and compliant with
the international standard (EN 50325-4).

CiA
CAN in Automation (CiA) is an international organization composed of users and manufacturers. It is
designed to develop and support CANopen and other CAN-based high-level protocols.

CiA405 IEC 61131-3 PLC CANopen interface and device configuration file

COB CANopen protocol communication object

EMCY Emergency

NMT CANopen network management

OD Protocol object dictionary

PDO Protocol process data object

SDO Protocol service data object

-319-

Chapter 6 Inovance Instruction Library

6.3.2 CANopen 402

Designed based on PLCopen and CiA402 standards, the function block supports CiA402 linear control
modes, such as the profile speed mode, profile position mode, and homing mode. It does not support
rotation mode, soft axis limit, or hardware limit. In linear control mode, the position ranges from
-2147483648 to 2147483647. Axis state switchover is designed based on the diagram of PLCopen state
machine, as shown in the following figure.

1 MC_Power_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_Power_CO Motor enabling

MC_Power_CO(

 Axis:= ,

 Enable:= ,

 bRegulatorOn:= ,

 bDriveStart:= ,

 Status=> ,

 bRegulatorRealState=> ,

 bDriveStartRealState=> ,

 Busy=> ,

 Error=> ,

ErrorID=>);

-320-

Chapter 6 Inovance Instruction Library

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Enable Enable BOOL [FALSE,TRUE] FALSE
(Triggered by level) TRUE:
Enables the function block.

bRegulatorOn
Motor
enabling

BOOL [FALSE,TRUE] FALSE
Enables the motor (used with
DriveStart).

bDriveStart
Quick
emergency
stop

BOOL [FALSE,TRUE] FALSE
Quick emergency stop is not
supported.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Status
Axis motion
preparation
status

BOOL [FALSE,TRUE] FALSE
Indicates the axis motion
preparation status.

bRegulatorRealState
Enable valid
state

BOOL [FALSE,TRUE] FALSE
Indicates whether the drive is
enabled (TRUE: Enabled).

bDriveStartRealState

Valid state
of the
quick stop
mechanism

BOOL [FALSE,TRUE] FALSE
Indicates emergency stop, not
supported currently.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
TRUE indicates that the
function block is being
executed.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function
block.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see
ERROR_CO for details).

3) Function

 ■ The function block is mainly used for axis enabling/disabling and quick emergency stop. Use of the
quick emergency stop function depends on whether the drive supports the function.

 ■ If RegulatorRealState is TRUE, the drive is enabled but not necessarily controllable. Motion control
can be implemented only when Status is TRUE.

 ■ The quick stop mode depends on the value of the object dictionary 16#605A. To change the stop
mode, set the 16#605A parameter, depending on whether the drive supports the function.

-321-

Chapter 6 Inovance Instruction Library

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

Error ID Enumerated Value Description

0 NO_ERROR No error

1 DI_GENERAL_COMMUNICATION_ERROR Axis communication error

2 DI_AXIS_ERROR Drive axis error

21 WRONG_OPMODE Incorrect operation mode

33 AXIS_IN_ERRORSTOP Axis in ErrorStop state

34 AXIS_NOT_READY_FOR_MOTION Axis not ready for motion

35 MA_MR_MODULO_ACT_POS_NOT_MAPPED Reserved

36 MV_INVALID_VELACCDEC_VALUES Invalid speed or acceleration/deceleration

80 RAG_ERROR_DURING_STARTUP Reserved

81 RAG_ERROR_WRITING_COMSTATE Reserved

82 RAG_ERROR_READING_COMSTATE Reserved

90 CGR_ZERO_VALUES Reserved

91 CGR_AXIS_POWERED Reserved

93 CGR_MODULOPERIOD_NOT_INTEGRAL Reserved

94 CGR_MOVEMENTTYPE_INVALID Reserved

95 CGR_MODULOPERIOD_NON_POSITIVE Reserved

96 CGR_MODULOPERIOD_TOO_SMALL Reserved

97 CGR_MODULOPERIOD_TOO_LARGE Reserved

120 R_NO_ERROR_TO_RESET No error to reset

121 R_DRIVE_DOESNT_ANSWER No answer

122 R_ERROR_NOT_RESETTABLE Error not resettable

123 R_DRIVE_DOESNT_ANSWER_IN_TIME Reserved

130 RP_PARAM_UNKNOWN Read parameter error

131 RP_REQUESTING_ERROR Communication request error

132 RP_RCV_PARAM_CONVERSION_ERROR Reserved

133 RP_LOCAL_PARAM_NOT_DONE_IMMEDIATELY Reserved

134 RP_CANNOT_SEND_MSG Unable to send messages

-322-

Chapter 6 Inovance Instruction Library

Error ID Enumerated Value Description

140 WP_PARAM_INVALID Write parameter error

141 WP_SENDING_ERROR Sending error

142 WP_TMT_PARAM_CONVERSION_ERROR Reserved

143 WP_LOCAL_PARAM_NOT_DONE_IMMEDIATELY Reserved

144 WP_CANNOT_SEND_MSG Unable to send messages

170 H_AXIS_WASNT_STANDSTILL Axis in Standstill state for homing

183 MS_AXIS_IN_ERRORSTOP
ErrorStop state not allowed for the mc_stop function
block

184 MS_AXIS_IN_STOPPING
Stopping state not allowed for the mc_stop function
block

10000 TIMEOUT_CHANGING_OPMODE Mode switching timeout

10001 INTERNAL_UNKNOWN_CMD Reserved

10002 CANNOT_START_MOVEMENT Reserved

10003 CANNOT_START_HOMING Reserved

10004 STOP_ALREADY_ACTIVE Reserved

10005 POWER_ALREADY_ACTIVE Reserved

10006 SMC_DI_VOLTAGE_DISABLED Axis motion process interrupt enabled

2 MC_MoveAbsolute_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_MoveAbsolute_CO Absolute positioning

MC_MoveAbsolute_CO(

 Axis:= ,

 Execute:= ,

 Position:= ,

 Velocity:= ,

 Acceleration:= ,

 Deceleration:= ,

 Done=> ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

 ErrorID=>);

-323-

Chapter 6 Inovance Instruction Library

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis AXIS_REF_HC_CO N/A N/A Indicates a CANopen axis.

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges) FALSE
to TRUE: Execution starts.

Position
Target
position

LREAL (0, 1.7E 308) 0.0
Unit: unit, only linear mode
supported

Velocity Target speed LREAL (0, 1.7E 308) 0.0
Unit: unit/s, only linear mode
supported

Acceleration
Target
acceleration

LREAL (0, 1.7E 308) 0.0
Unit: unit/s2, only linear mode
supported

Deceleration
Target
acceleration

LREAL (0, 1.7E 308) 0.0
Unit: unit/s2, only linear mode
supported

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE
TRUE: The motion execution
is completed, and positioning
succeeds.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE TRUE: Motion is being executed.

CommandAborted Abort flag BOOL [FALSE,TRUE] FALSE TRUE: Motion is interrupted.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs during
motion.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see
ERROR_CO for details).

3) Function

 ■ The controlled axis is moved to a specified absolute position through the absolute positioning
function. The pulse count for absolute positioning ranges from -2147483648 to 2147483647. If the
pulse count is out of range, an error occurs during positioning. The motion function block cannot run
normally.

 ■ Velocity, Acceleration, and Deceleration values must be greater than 0.

 ■ If the positioning length is out of range (-2147483648 to 2147483647), reduce the servo electronic gear
ratio coefficient or lower the stepper drive.

 ■ When positioning is completed, Done is set to TRUE and the controlled axis is in Standstill state.

-324-

Chapter 6 Inovance Instruction Library

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

3 MC_MoveRelative_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_MoveRelative_CO Relative positioning

MC_MoveRelative_CO(

 Axis:= ,

 Execute:= ,

 Distance:= ,

 Velocity:= ,

 Acceleration:= ,

 Deceleration:= ,

 Done=> ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

 ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range
Initial
Value

Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

-325-

Chapter 6 Inovance Instruction Library

 ■ Input Variable

Input Variable Name Data Type Valid Range
Initial
Value

Description

Execute
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges) FALSE
to TRUE: Execution starts.

Distance
Indicates
the relative
distance.

LREAL (0, 1.7E 308) 0.0
Unit: unit, only linear mode
supported

Velocity
Target
speed

LREAL (0, 1.7E 308) 0.0
Unit: unit/s, only linear mode
supported

Acceleration
Target
acceleration

LREAL (0, 1.7E 308) 0.0
Unit: unit/s2, only linear mode
supported

Deceleration
Target
acceleration

LREAL (0, 1.7E 308) 0.0
Unit: unit/s2, only linear mode
supported

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE
TRUE: The motion execution
is completed, and positioning
succeeds.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE TRUE: Motion is being executed.

CommandAborted Abort flag BOOL [FALSE,TRUE] FALSE TRUE: Motion is interrupted.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs during
motion.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see
ERROR_ CO for details).

3) Function

 ■ The relative positioning function block moves the controlled axis a distance (Motion target position =
Standstill position when the function block is executed + Relative distance). If the relative positioning
instruction is started while the axis is moving under the absolute positioning instruction, the motion
target position is the absolutely defined target position plus relative distance.

 ■ If the positioning length is out of range (-2147483648 to 2147483647), reduce the servo electronic gear
ratio coefficient or lower the stepper drive.

 ■ When the device is used with Inovance IS620_CO, if the relative positioning command or absolute
positioning command being executed is interrupted by the relative motion command, the absolute
target position calculated through a relative command is the position the axis moving relatively or
absolutely should reach plus the relative position for the motion instruction.

 ■ When positioning is completed, Done is set to TRUE and the controlled axis is in Standstill state.

4) Sequence Diagram

-326-

Chapter 6 Inovance Instruction Library

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

4 MC_MoveVelocity_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_MoveVelocity_CO
Motion in
speed mode

MC_MoveVelocity_CO(

 Axis:= ,

 Execute:= ,

 Velocity:= ,

 Acceleration:= ,

 Deceleration:= ,

 InVelocity=> ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

 ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input Variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute Execution input BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges)
FALSE to TRUE: Execution
starts.

Velocity Target speed LREAL
(-1.7E 308,
1.7E 308)

0.0
Unit: unit/s, only linear mode
supported

Acceleration
Target
acceleration

LREAL (0, 1.7E 308) 0.0
Unit: unit/s2, only linear mode
supported

Deceleration
Target
acceleration

LREAL (0, 1.7E 308) 0.0
Unit: unit/s2, only linear mode
supported

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

InVelocity
Speed reached
flag

BOOL [FALSE,TRUE] FALSE
TRUE: The axis speed reaches
the preset value.

-327-

Chapter 6 Inovance Instruction Library

Output Variable Name Data Type Valid Range Initial Value Description

Busy Execution flag BOOL [FALSE,TRUE] FALSE
TRUE: Motion is being
executed.

CommandAborted Abort flag BOOL [FALSE,TRUE] FALSE TRUE: Motion is interrupted.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs during
motion.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see
ERROR_CO for details).

3) Function

 ■ On the function block for motion in speed mode, after the speed reaches the preset value, the
controlled axis runs at the speed constantly. To stop the axis, you need to interrupt and abort the
current function block by using another command. When the function block is interrupted by another
command, the output parameter InVelocity must be reset.

 ■ The position varies in the range of -2147483648 to 2147483647.

 ■ When the device is used with IS620N_CO, if the position overflows (the pulse position changes from
2147483647 to -2147483648 or from -2147483648 to 2147483647) in motion mode, return the axis
to home, switch to the position mode, and then use the position motion command because the
overflow count is not memorized in position mode (different from the synchronization cycle mode).

 ■ During normal motion, the controlled axis is in ContinuesMoiton state.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

5 MC_Home_CO

1) Instruction Format

Graphic Expression

-328-

Chapter 6 Inovance Instruction Library

Graphic Expression

Instruction Name ST expression

MC_Home_CO
Indicates
homing
motion.

MC_Home_CO(

 Axis:= ,

 Execute:= ,

 Position:= ,

 Done=> ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

 ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input Variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges) FALSE to
TRUE: Execution starts.

position
Home
offset

LREAL (0, 1.7E 308) 0.0
Unit: unit/s, only linear mode
supported

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE TRUE: Homing is completed.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE TRUE: Motion is being executed.

CommandAborted Abort flag BOOL [FALSE,TRUE] FALSE TRUE: Motion is interrupted.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs during
motion.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see ERROR_
CO for details).

3) Function

 ■ On the homing function block, the controlled axis returns to home in preset mode. The axis stops
when reference signals are detected. The current absolute position is updated to the value of the
input parameter position.

 ■ Homing cannot be interrupted by the positioning command or speed command.

 ■ During normal motion, the controlled axis is in Homing state.

 ■ The position home offset is the distance the axis deviates from the absolute position of home (unit:
unit). When the hardware model is detected and homing stops, the current absolute position is set to

-329-

Chapter 6 Inovance Instruction Library

position, and the controlled axis is in Standstill state.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

6 MC_Stop_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_Stop_CO Motion stop

MC_Stop_CO(

 Axis:= ,

 Execute:= ,

 Done=> ,

 Busy=> ,

 Error=> ,

 ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges) FALSE to
TRUE: Execution starts.

-330-

Chapter 6 Inovance Instruction Library

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE TRUE: The axis stops.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
TRUE: The stop command is being
executed.

Error Error flag BOOL [FALSE,TRUE] FALSE TRUE: A stop command error occurred.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see ERROR_CO
for details).

3) Function

 ■ On the motion stop function block, after execution is triggered by rising edges, the controlled axis
stops. If Execute is TRUE or the axis is not stopped, no other motion commands can be sent, and the
axis is in Stopping state. After the axis is stopped and Execute is reset, the axis is in Standstill state.

 ■ As many manufacturers do not support execution stop through the control word bit 8. Through the
stop function, the system switches to the speed mode, and you can set the target speed to 0 and stop
motion by running speed commands.

 ■ After motion stops, you need to reset the Execute state. Otherwise, you cannot run other motion
commands.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

7 MC_Halt_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_Halt_CO Motion stop

MC_Halt_CO(

 Axis:= ,

 Execute:= ,

 Deceleration:= ,

 Done=> ,

 CommandAborted=> ,

 Busy=> ,

 Error=> ,

 ErrorID=>);

-331-

Chapter 6 Inovance Instruction Library

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input variable

Input variable Name Data Type Valid Range Initial Value Description

Execute

Port for
function
block
execution

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges)
FALSE to TRUE: Execution
starts.

Deceleration Deceleration LREAL (0, 1.7E 308) 0.0
Unit: unit/s2, only linear mode
supported

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done Complete flag BOOL [FALSE,TRUE] FALSE TRUE: The axis stops.

Busy Execution flag BOOL [FALSE,TRUE] FALSE
TRUE: The stop command is
being executed.

CommandAborted Abort flag BOOL [FALSE,TRUE] FALSE TRUE: Motion is interrupted.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: A stop command error
occurred.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see
ERROR_CO for details).

3) Function

 ■ When the axis is stopped through commands, the axis is in DiscreteMotion state until the speed is
zero. When Done is TRUE, the axis is in Standstill state.

 ■ During the MC_Halt_CO execution stop, MC_Halt_CO can be interrupted by other motion commands.

 ■ After the MC_Halt_CO execution is completed, unlike MC_Stop_CO, you can use other motion
commands without resetting the Execute port state.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

-332-

Chapter 6 Inovance Instruction Library

8 MC_Reset_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_Reset_CO Resets the axis.

MC_Reset_CO(

 Axis:= ,

 Execute:= ,

 Done=> ,

 Busy=> ,

 Error=> ,

 ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges) FALSE to
TRUE: Execution starts.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE TRUE: Reset is completed.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
TRUE: The reset command is being
executed.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: A reset command error
occurred.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see ERROR_CO
for details).

3) Function

 ■ Reset all errors relating to internal axes, and forcibly switch axes from the ErrorStop state to the
Standstill or PowerOff state. If you perform the reset action when the controlled axis is not in
ErrorStop state, the function block reports an error.

 ■ Motion errors and errors for which the servo supports the reset action can be reset.

-333-

Chapter 6 Inovance Instruction Library

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

9 MC_WriteParameter_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_WriteParameter_CO
Write remote
device
parameter

MC_WriteParameter_CO(

 Axis:= ,

 Execute:= ,

 ParameterNumber:= ,

 Value:= ,

 Done=> ,

 Busy=> ,

 Error=> ,

 ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges)
FALSE to TRUE: Execution
starts.

ParameterNumber Parameter DINT [0,2^32) 0
Indicates the parameter
number, which should be
operated in combined mode.

Value Value LREAL (-1.7E 308, 1.7E 308) 0.0 Writes a value.

-334-

Chapter 6 Inovance Instruction Library

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE TRUE: Reset is completed.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
TRUE: The command is being
executed.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs on the
function block.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see
ERROR_CO for details).

3) Function

 ■ Write object dictionary data: Based on CANopen parameters, the specific axis parameter number
consists of the object dictionary length 16 ＃ UV (1 byte), object dictionary index 16 ＃ ABCD (2
bytes) and subindex 16 ＃ EF (1 byte), which form the -16 ＃ UVABCDEF mode. Example: If the write
object index value is 16 ＃ 607C, the subindex value is 16#00, and the data length value is 16#04, the
parameter number is -16 ＃ 04607C00.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

10 MC_ReadParameter_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_ReadParameter_CO
Read remote
device
parameter

MC_ReadParameter_CO(

 Axis:= ,

 Enable:= ,

 ParameterNumber:= ,

 Valid=> ,

 Busy=> ,

 Error=> ,

 ErrorID=> ,

 Value=>);

-335-

Chapter 6 Inovance Instruction Library

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_
REF_HC_
CO

N/A N/A Indicates a CANopen axis.

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by rising edges) FALSE to
TRUE: Execution starts.

ParameterNumber Parameter DINT [0,2^32) 0
Indicates the parameter number,
which should be operated in
combined mode.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE TRUE: Reset is completed.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
TRUE: The command is being
executed.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs on the
function block.

ErrorID Error ID
ERROR_
CO

N/A NO_ERROR
Indicates the error ID (see ERROR_
CO for details).

Value Value LREAL
(-1.7E 308,
1.7E 308)

0.0 Indicates a read value.

3) Function

 ■ Read object dictionary data: Based on CANopen parameters, the specific axis parameter number
consists of the object dictionary length 16 ＃ UV (1 byte), object dictionary index 16 ＃ ABCD (2
bytes) and subindex 16 ＃ EF (1 byte), which form the -16 ＃ UVABCDEF mode. Example: If the read
object index value is 16 ＃ 607C, the subindex value is 16#00, and the data length value is 16#04, the
parameter number is -16 ＃ 04607C00.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

-336-

Chapter 6 Inovance Instruction Library

11 MC_ReadStatus_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_ReadStatus_CO
Current axis
motion state

MC_ReadStatus_CO(

 Axis:= ,

 Enable:= ,

 Valid=> ,

 Busy=> ,

 Error=> ,

 ErrorID=> ,

 ErrorStop=> ,

 Disabled=> ,

 Stopping=> ,

 Homing=> ,

 Standstill=> ,

 DiscreteMotion=> ,

 ContinuousMotion=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input Variable

Input Variable Name Data Type Valid Range Initial Value Description

Enable
Execution
input

BOOL [FALSE,TRUE] FALSE
(Triggered by level edges) TRUE:
Indicates the Reading state.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Valid
Reading state
validity flag

BOOL [FALSE,TRUE] FALSE TRUE: Reset is completed.

Busy Execution flag BOOL [FALSE,TRUE] FALSE
TRUE: The command is being
executed.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs on the
function block.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see ERROR_
CO for details).

-337-

Chapter 6 Inovance Instruction Library

Output Variable Name Data Type Valid Range Initial Value Description
ErrorStop Error stop BOOL [FALSE,TRUE] FALSE TRUE: The axis fails.
Disabled Disabled BOOL [FALSE,TRUE] FALSE TRUE: The axis is disabled.

Stopping Stopping BOOL [FALSE,TRUE] FALSE
TRUE: The stop command is being
executed.

Homing Homing BOOL [FALSE,TRUE] FALSE TRUE: The axis is homing.

Standstill
Motor
enabling

BOOL [FALSE,TRUE] FALSE TRUE: The axis is enabled.

DiscreteMotion
Discrete
motion

BOOL [FALSE,TRUE] FALSE
TRUE: The axis is moving in point-
to-point mode.

ContinuousMotion
Continuous
motion

BOOL [FALSE,TRUE] FALSE
TRUE: The speed command is
being executed.

3) Function

 ■ Based on the PLCopen state machine standard, the motion state of controlled axis is displayed in the
form of Boolean variable.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

12 MC_Jog_CO

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_Jog_CO
Read remote
device
parameter

MC_Jog_CO(

 Axis:= ,

 JogForward:= ,

 JogBackward:= ,

 Velocity:= ,

 Acceleration:= ,

 Deceleration:= ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

 ErrorID=>);

-338-

Chapter 6 Inovance Instruction Library

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis
AXIS_REF_
HC_CO

N/A N/A Indicates a CANopen axis.

 ■ Input Variable

Input Variable Name Data Type Valid Range Initial Value Description

JogForward
Jog in the
forward direction

BOOL [FALSE,TRUE] FALSE
Indicates a jog in the
forward direction.

JogBackword
Jog in the reverse
direction

BOOL [FALSE,TRUE] FALSE
Indicates a jog in the
reverse direction.

Velocity Speed LREAL (0, 1.7E 308) 0.0 Indicates the jog speed.

Acceleration Acceleration LREAL (0, 1.7E 308) 0.0 Indicates the acceleration.

Deceleration Deceleration LREAL (0, 1.7E 308) 0.0
Indicates the
deceleration.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Busy Execution flag BOOL [FALSE,TRUE] FALSE
TRUE: The command is
being executed.

CommandAborted Abort flag BOOL [FALSE,TRUE] FALSE TRUE: Motion is aborted.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE: An error occurs on
the function block.

ErrorID Error ID ERROR_CO N/A NO_ERROR
Indicates the error ID (see
ERROR_CO for details).

3) Function

 ■ The function block is used for axis jog control in both forward and reverse directions.

 ■ If JogBackword and JogForward are set to TRUE simultaneously, motion stops. Velocity,
Acceleration, and Deceleration values must be greater than 0.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

-339-

Chapter 6 Inovance Instruction Library

6.3.3 CANopen 402 Parameter Setting

Configuration is an important part of Inovance Inoproshop programming software. Currently, Inoproshop
supports IS620P-CO models only. To use drives of other manufacturers, import EDS files of other
manufacturers first. In addition, confirm that drive programs of other manufacturers are designed in strict
compliance with CANopen communication flags and CiA402 standard.

Before calling the CANopen402 function block, set parameters correctly.

1 Master Configuration

Major configuration items for the master include communication Baud rate, synchronization mode,
synchronization cycle period, heartbeat, and producer time.

 ■ Communication Baud rate: The communication efficiency is improved as the Baud rate increases.
However, the communication distance decreases as the Baud rate increases. Normally, the Baud rate
is set to 500 Kbits/s.

 ■ Synchronization mode: Enable Sync Producing must be selected. Otherwise, the function block
cannot work.

 ■ Synchronization cycle period: If only CANopen axis is available, it is recommended that you set the
period to 4 ms, set the number of slaves to 3, and set the size of PDO configurations sent and received
to less than eight bytes. It is recommended that the cycle period be equal to the CANopen task scan
cycle period.

 ■ Heartbeat: The master sends heartbeat frames at intervals of producer time so that slaves can check
whether the master is disconnected. The function must be used with slaves. Some slaves do not have
the heartbeat check function, which is not required by default.

 ■ Producer time: The master sends heartbeat frames to slaves at intervals of preset producer time. The
producer time is 300 ms by default and takes effect when Enable Heartbeat is selected.

1 - CANopen master station; 2 - Baud rate; 3 - Synchronize the master station; 4 - Synchronization cycle period;
5 - Enable heartbeat as necessary.

Figure 6-29  CANopen master configuration

2 Slave Configuration

Major configuration items for a slave include node ID, heartbeat, producer time, PDO synchronization
mode, and synchronization object dictionary. For details, see Figure 6-30, Figure 6-31, and Figure 6-32.

 ■ Node ID: Also called the station number, it is a basic parameter for slave communication. It should be
consistent with the physical station number.

 ■ Heartbeat: The slave sends heartbeat frames to specified stations so that other stations can monitor

-340-

Chapter 6 Inovance Instruction Library

its communication status. Enable Heartbeat is selected by default.

 ■ Producer time: The slave sends heartbeat frames to specified stations at intervals of preset producer
time. The producer time is 1000 ms by default and takes effect when Enable Heartbeat is selected.

 ■ PDO synchronization mode: The asynchronous mode is selected by default. You need to change it to
the cyclic synchronization mode.

 ■ PDO dictionary configuration: The PDO dictionary ensures that slaves exchange data with the master
every bus cycle. The more PDOs, the more efficient slaves exchange data with the master. However,
the more PDOs, the more the bus load. Excessive PDOs may delay bus data transmission and even
cause disconnection. Select 16#607A and 16#6040 for PDO receiving. Select 16#6064 or 16#6063
and 16#6041 for PDO sending. In this way, the load demand can be met.

1 - Node ID; 2 - Enable heartbeat; 3 - Heartbeat cycle; 4 - Heartbeat consumer properties

Figure 6-30 CANopen slave parameter setting

1 - Double click to set PDO sending from slave stations; 2 - Send the PDO dictionary; 3 - Set the synchronization cycle
for sending PDOs from slave stations.

Figure 6-31 Configuration for CANopen slave sending PDOs

-341-

Chapter 6 Inovance Instruction Library

1 - Double click to set PDO receiving by slave stations; 2 - Receive the PDO dictionary; 3 - Set the synchronization cycle
for PDO receiving by slave stations.

Figure 6-32 Configuration for CANopen slave receiving PDOs

3 Axis Configuration

1 - Set it to the linear mode; 2 - Set the parameters based on the drive-encoder pulse zoom ratio. For details, see the
EtherCAT axis.

Figure 6-33 CANopen axis configuration

-342-

Chapter 6 Inovance Instruction Library

6.3.4 CANopen 402 Error Diagnosis

Online Diagnosis

The system displays the last function block error or system error so that the error type can be diagnosed
quickly.

1 - Error ID; 2 - Error description

Figure 6-34 Online CANopen axis diagnosis
The following table lists error IDs and descriptions.

Error ID Enumerated Value Description

0 NO_ERROR No error

1 DI_GENERAL_COMMUNICATION_ERROR Axis communication error

2 DI_AXIS_ERROR Drive axis error

21 WRONG_OPMODE Incorrect operation mode

33 AXIS_IN_ERRORSTOP Axis in ErrorStop state

34 AXIS_NOT_READY_FOR_MOTION Axis not ready for motion

35 MA_MR_MODULO_ACT_POS_NOT_MAPPED Reserved

36 MV_INVALID_VELACCDEC_VALUES Invalid speed or acceleration/deceleration

80 RAG_ERROR_DURING_STARTUP Reserved

81 RAG_ERROR_WRITING_COMSTATE Reserved

82 RAG_ERROR_READING_COMSTATE Reserved

90 CGR_ZERO_VALUES Reserved

91 CGR_AXIS_POWERED Reserved

93 CGR_MODULOPERIOD_NOT_INTEGRAL Reserved

94 CGR_MOVEMENTTYPE_INVALID Reserved

95 CGR_MODULOPERIOD_NON_POSITIVE Reserved

96 CGR_MODULOPERIOD_TOO_SMALL Reserved

97 CGR_MODULOPERIOD_TOO_LARGE Reserved

120 R_NO_ERROR_TO_RESET No error to reset

121 R_DRIVE_DOESNT_ANSWER No answer

122 R_ERROR_NOT_RESETTABLE Error not resettable

123 R_DRIVE_DOESNT_ANSWER_IN_TIME Reserved

130 RP_PARAM_UNKNOWN Read parameter error

131 RP_REQUESTING_ERROR Communication request error

132 RP_RCV_PARAM_CONVERSION_ERROR Reserved

-343-

Chapter 6 Inovance Instruction Library

Error ID Enumerated Value Description

133 RP_LOCAL_PARAM_NOT_DONE_IMMEDIATELY Reserved

134 RP_CANNOT_SEND_MSG Unable to send messages

140 WP_PARAM_INVALID Write parameter error

141 WP_SENDING_ERROR Sending error

142 WP_TMT_PARAM_CONVERSION_ERROR Reserved

143 WP_LOCAL_PARAM_NOT_DONE_IMMEDIATELY Reserved

144 WP_CANNOT_SEND_MSG Unable to send messages

170 H_AXIS_WASNT_STANDSTILL Axis in Standstill state for homing

183 MS_AXIS_IN_ERRORSTOP
ErrorStop state not allowed for the mc_stop function
block

184 MS_AXIS_IN_STOPPING
Stopping state not allowed for the mc_stop function
block

10,000 TIMEOUT_CHANGING_OPMODE Mode switching timeout

10001 INTERNAL_UNKNOWN_CMD Reserved

10002 CANNOT_START_MOVEMENT Reserved

10003 CANNOT_START_HOMING Reserved

10004 STOP_ALREADY_ACTIVE Reserved

10005 POWER_ALREADY_ACTIVE Reserved

10006 SMC_DI_VOLTAGE_DISABLED Axis motion process interrupt enabled

Log Diagnosis

System program running errors can be logged for a period of time. You can locate the process of program
error occurrence based on logs, in which error date, time, drive axis, function block, and error ID are
recorded.

As shown in the following figure, the error occurred at 09:09:24 on 2017.9.20, the drive number is 4, the
function block is Axis_CO, and the error message is "DI_GENERAL_COMMUNICATION_ERROR". According
to the preceding error table, the axis error is a communication error.

Based on the log, you can determine that a communication error occurred and then the absolute
positioning function block reported the error.

1 - Login; 2 - Log; 3 - Error date, time, and content

Figure 6-35 CANopen axis log diagnosis

-344-

Chapter 6 Inovance Instruction Library

6.3.5 Precautions

1 When used with Inovance IS620P (MCU version earlier than 11.0):

For an IS620P-CO object dictionary, none of the target speed (16#60FF) in profile speed mode, speed
in profile position mode (16#6081), acceleration (16#6083) in profile position mode, and deceleration
(16#6084) in profile position mode is in the unit of pulses. However, all input motion parameters of PLC
function blocks are in the unit of pulses. Therefore, conversion is required.

The following figure shows the absolute positioning function block. The axis zoom ratio (facter) is
1:1048576. The target position assigned by the PLC to the servo is 500 units multiplied by facter (object
dictionary 16#607A). The speed, acceleration, and deceleration are 1048.576 (0.001 × facter = 1048.576).

Figure 6-36 CANopen absolute positioning function block
Why are speed and acceleration values so small? Actually the preset values for the function block are
large because the speed and acceleration for an IS620P-CO model are in the unit of rpm and rpm/ms,
respectively. For the servo, the speed and acceleration/deceleration are set to 1,048 rpm (decimal places
discarded) and 1,048 rpm/s (decimal places discarded), respectively. However, standard speed and
acceleration/deceleration units are pulses/s and pulses/s2, respectively. Therefore, convert units during
use.

Figure 6-37 IS620P-CO speed and acceleration/deceleration units

2 When used with Kinco FM8660:

If a Kinco drive is switched to another working mode during motion, the control mode is normal but the
feedback mode is abnormal. As a result, the MC_Stop_CO function block cannot work.

Do not switch the mode if a Kinco drive is not enabled. Otherwise, the MC_Power_CO function block
cannot work. It switches from the current control mode to the profile position control mode. When the
device fails in profile speed mode, the device is disconnected. If the device is reset and re-enabled, the
axis automatically runs again at the target speed previously set. To avoid this problem, we have processed
the function block as described above. Therefore, the function block cannot be used with a Kinco drive.

6.4 EtherCAT Remote Counting

Function overview: The EtherCAT slave module with a high-speed input port has counting, sampling,
comparison output, touch probe, and other functions. The maximum frequency of sampling and output is
200 kHz. The maximum frequency of high-speed interrupts is 3 kHz.

Library name: IoDrvEtherCATEncoder (applicable to V1.0.5.0 and later versions)

-345-

Chapter 6 Inovance Instruction Library

6.4.1 HC_Counter_ETC

1) Instruction Format

Graphic Expression

Instruction Name ST expression

HC_Counter_ETC
Counter
enabling

HC_Counter_ETC(

 Counter:= ,

 Enable:= ,

 CounterValue=> ,

 Frequency=> ,

 Direction=> ,

 Valid=> ,

 Busy=> ,

 Error=> ,

ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Counter
Remote
counter

AXIS_REF_
ENCODER_ETC

N/A N/A
AXIS_REF_ENCODER_ETC

Counter variable

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Enable Enabled BOOL [FALSE,TRUE] FALSE
(Triggered by level) TRUE: Enables
the counter.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

CounterValue Count LREAL
(-1.7E 308,
1.7E 308)

0.0
Indicates the current count,
converted from count pulses.

Frequency Frequency UDINT [0,2^32) 0
Indicates the frequency of collected
pulses.

Direction
Indicates
the
direction.

COUNTER_DIR [-1,1] -1 Indicates the counting direction.

Valid
Enabled
state

BOOL [FALSE,TRUE] FALSE
Indicates that the counter is
enabled.

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
Executes the counter enabling
command.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error occurs
inside the function block.

ErrorID Error ID
COUNTER_
ERROR

N/A
COUNTER_
NO_ERROR

Indicates the error ID (see
COUNTER_ERROR for details).

-346-

Chapter 6 Inovance Instruction Library

3) Function

 ■ The function block is used for remote counter enabling, counting, frequency measurement, and
counting direction output.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

Error ID Enumerated Value Description

0x00 COUNTER_NO_ERROR No error occurs.

0x01 COUNTER_ERROR_ECT_COMMUNICATION ETC communication fails.

0x02 COUNTER_ERROR_PV_PRESETVALUE_EXCEED The preset value is out of range.

0x03 COUNTER_ERROR_CP_COMPARE_VAULE_INVALID The comparison value is improperly set.

0x04 COUNTER_ERROR_FILT_PARAM_EXCEED The filter coefficient is out of range.

0x10 COUNTER_ERROR_PV_DI_CONFIGURE_ERROR
The presetting function is not configured for
the DI terminal.

0x11 The counter is zeroed, not in use.

0x12 COUNTER_ERROR_TP_DI_CONFIGURE_ERROR
The touch probe is not configured for the DI
terminal.

0x30 COUNTER_ERROR_CP_DO_CONFIGURE_ERROR
The coincident output function is not
configured for the DO output terminal.

0x50 COUNTER_ERROR_INPUT_PUSLE_FREQUENCY_TOO_HIGH The input frequency is greater than 202 kHz.

0x51 COUNTER_ERROR_OVERFLOW The count overflows.

0x52 COUNTER_ERROR_UNDERFLOW The count underflows.

0x1001 COUNTER_ERROR_PV_TYPE_INVALID The preset type is out of range.

0x1002 COUNTER_ERROR_DISABLE The counter is disabled.

0x1003 COUNTER_ERROR_TP_PARAM_INVALID Touch probe parameters are invalid.

0x1004 COUNTER_ERROR_CP_PARAM_INVALID Comparison channel parameters are invalid.

0x1005 COUNTER_ERROR_R_NO_ERROR_CLEAR No errors are cleared.

0x1006 COUNTER_ERROR_R_ERROR_CANNOT_RESET Errors cannot be cleared.

0x1100 COUNTER_ERROR_PARAM_NO_PDO_MAPPING No PDOs are configured for the instruction.

-347-

Chapter 6 Inovance Instruction Library

6.4.2 HC_SetCompare_ETC

1) Instruction Format

Graphic Expression

Instruction Name ST expression

HC_SetCompare_ETC

Coincident
output
function for
a remote
counter

HC_SetCompare_ETC(

 Counter:= ,

 Execute:= ,

 Abort:= ,

 Channel:= ,

 CompareValue:= ,

 ImRefreshCycle:= ,

 Done=> ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Counter Counter
AXIS_REF_
ENCODER_ETC

N/A N/A
AXIS_REF_ENCODER_ETC

Counter variable

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute Enabled BOOL [FALSE,TRUE] FALSE
(Triggered by edges) Indicates
the switch used to execute
coincident functions.

Abort Abort BOOL [FALSE,TRUE] FALSE
(Triggered by level) TRUE: Aborts
the function block execution.

Channel
Comparison
channel

BYTE [1,2] 1
Selects a comparison channel
for the counter (two comparison
channels available).

CompareValue
Comparison
value

LREAL
(-1.7E 308, 1.7E
308)

0.0
Indicates a comparison value,
which is a floating point (unit:
unit).

ImRefreshCycle
Output hold
time

UINT (0,2^32) 1000

Indicates the hold time for
output port enabling, in the
minimum unit of 100 μs.

The default value is 1000 (1000 ×
100 μs = 100 ms).

-348-

Chapter 6 Inovance Instruction Library

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Coincident
function
completed

BOOL [FALSE,TRUE] FALSE
The count pulse reaches the
preset comparison value, and
the output hold time runs out.

CommandAborted
Aborted
state

BOOL [FALSE,TRUE] FALSE
Indicates the Aborted state
(Abort = TURE).

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE Executes coincident functions.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function
block.

ErrorID Error ID
COUNTER_
ERROR

N/A
COUNTER_
NO_ERROR

Indicates the error ID (see
COUNTER_ERROR for details).

3) Function

 ■ When the current count of the remote counter is equal to the preset comparison value, the function
block triggers a hardware high-speed output port and holds it for a period of time.

 ■ The coincident output function is executed by a single trigger. When Done is TRUE, the coincident
function is completed. To continue using the comparison function, trigger the execution again.

 ■ Confirm attributes of counter coincident output points configured in development software.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

-349-

Chapter 6 Inovance Instruction Library

6.4.3 HC_Presetvalue_ETC

1) Instruction Format

Graphic Expression

Instruction Name ST expression

HC_PresetValue_ETC
Counter
presetting

HC_PresetValue_ETC(

 Counter:= ,

 Execute:= ,

 Abort:= ,

 TriggerType:= ,

 PresetValue:= ,

 Done=> ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Counter
Remote
counter

AXIS_REF_
ENCODER_
ETC

N/A N/A
AXIS_REF_ENCODER_ETC

Counter variable

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute Enabled BOOL [FALSE,TRUE] FALSE
(Triggered by edges) Indicates
the switch used to execute the
presetting function.

Abort Abort BOOL [FALSE,TRUE] FALSE
(Triggered by level) TRUE: Aborts
the function block execution.

TriggerType
Trigger
type

BYTE [1,7] 1

Internal trigger: 0x01

DI trigger: 0x02

Combination of internal and DI
triggers: 0x03

Z-phase trigger: 0x04

Combination of internal and
Z-phase triggers: 0x05

Combination of DI and Z-phase
triggers: 0x06

Combination of internal, DI, and
Z-phase triggers: 0x07

PresetValue
Preset
value

LREAL (-1.7E 308, 1.7E 308) 0.0
Indicates the preset value of the
counter.

-350-

Chapter 6 Inovance Instruction Library

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Preset
successful
state

BOOL [FALSE,TRUE] FALSE

The count pulse reaches
the preset comparison
value, and the output
hold time runs out.

CommandAborted
Aborted
state

BOOL [FALSE,TRUE] FALSE
Indicates the Aborted
state (Abort = TURE).

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
Executes the counter
presetting command.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an
error occurs inside the
function block.

ErrorID Error ID COUNTER_ERROR N/A
COUNTER_
NO_ERROR

Indicates the error ID
(see COUNTER_ERROR
for details).

3) Function

 ■ The function block is used to preset the remote counter. Seven presetting modes are available.
When a combination of more than two triggers is selected, the counter is preset provided that any
of conditions in the combination is met. The Done signal is output after the counter is preset. The
presetting function block is executed by a single rising edge trigger.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

-351-

Chapter 6 Inovance Instruction Library

6.4.4 HC_TouchProbe_ETC

1) Instruction Format

Graphic Expression

Instruction Name ST expression

HC_TouchProbe_ETC
Counter
touch probe

HC_TouchProbe_ETC(

 Counter:= ,

 Execute:= ,

 Abort:= ,

 ProbeId:= ,

 ProbeType:= ,

 EdgeType:= ,

 InputType:= ,

 TriggerType:= ,

 Done=> ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

 ErrorID=> ,

 PositionPos=> ,

 PositionNeg=> ,

 TimePos=> ,

 TimeNeg=> ,

CycleCount=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Counter
Remote
counter

AXIS_REF_
ENCODER_ETC

N/A N/A
AXIS_REF_ENCODER_ETC

Counter variable

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute Enabled BOOL [FALSE,TRUE] FALSE
(Triggered by edges) Indicates
the switch used to execute
the presetting function.

Abort Abort BOOL [FALSE,TRUE] FALSE
(Triggered by level) TRUE:
Aborts the function block
execution.

ProbeId
Touch
probe ID

WORD [1,2] 1
Indicates the touch probe
ID (only two touch probes
available).

-352-

Chapter 6 Inovance Instruction Library

Input Variable Name Data Type Valid Range Initial Value Description

ProbeType
Touch
probe type

TOUCH_
PROBE_TYPE

N/A PositionLatch
Indicates the touch probe
type: time or position.

EdgeType Edge type
TOUCH_
PROBE_EDGE

N/A RisingEdge
Indicates the edge type: rising
edge or falling edge.

InputType
Hardware
trigger type

TOUCH_
PROBE_INPUT

N/A DigtalInput
Indicates an external trigger:
Z-phase trigger or DI trigger.

TriggerType
Trigger
mode

TOUCH_
PROBE_
TRIGGER

N/A TrigSingle
Indicates the trigger type:
continuous trigger or single
trigger.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done

Touch
probe
execution
status

BOOL [FALSE,TRUE] FALSE
Indicates that the touch
probe function execution
ends.

CommandAborted
Aborted
state

BOOL [FALSE,TRUE] FALSE
Indicates the Aborted state
(Abort = TURE).

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE
Execute the counter touch
probe function.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function
block.

ErrorID Error ID
COUNTER_
ERROR

N/A
COUNTER_
NO_ERROR

Indicates the error ID (see
COUNTER_ERROR for
details).

PositionPos
Rising
edge latch
position

LREAL
(-1.7E 308, 1.7E
308)

0.0
Indicates the rising edge
latch position (unit: unit).

PositionNeg
Falling
edge latch
position

LREAL
(-1.7E 308, 1.7E
308)

0.0
Indicates the falling edge
latch position (unit: unit).

TimePos
Rising edge
latch time

LINT [0,2^63) 0
Indicates the rising edge
latch time (unit: ns).

TimeNeg
Falling
edge latch
time

LINT [0,2^63) 0
Indicates the falling edge
latch time (unit: ns).

CycleCount

Touch
probe
check
count

WORD [0,2] 0

Indicates a valid touch probe
count in continuous trigger
mode. The CycleCount value
is increased when the touch
probe is triggered. It varies
between 0 to 2 cyclically.

-353-

Chapter 6 Inovance Instruction Library

3) Function

 ■ The function block is used for touch probes of the remote counter. Two touch probes are supported,
both of which can be triggered in single or continuous mode.

 ■ The position touch probe and time touch probe can be used simultaneously. When using the touch
probe function, check the configuration of counter touch probe attributes and PDO mapping. If they
are improperly configured, when the function block is triggered (Execute), Error is set to TRUE. You
can query the error table (COUNTER_ERROR) through the error ID (ErrorID).

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

6.4.5 HC_Reset_ETC

1) Instruction Format

Graphic Expression

Instruction Name ST expression

HC_Reset_ETC
Counter
resetting

HC_Reset_ETC(

 Counter:= ,

 Execute:= ,

 Done=> ,

 Busy=> ,

 Error=> ,

ErrorID=>);;

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Counter
Remote
counter

AXIS_REF_ENCODER_ETC N/A N/A
AXIS_REF_ENCODER_ETC

Counter variable

-354-

Chapter 6 Inovance Instruction Library

 ■ Input Variable

Input Variable Name Data Type Valid Range Initial Value Description

Execute Enabled BOOL [FALSE,TRUE] FALSE
(Triggered by edges) Indicates
the counter reset switch.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Reset
complete state

BOOL [FALSE,TRUE] FALSE
Indicates that the reset
function execution ends.

Busy Execution flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that the reset
command is being executed.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function
block.

ErrorID Error ID
COUNTER_
ERROR

N/A
COUNTER_
NO_ERROR

Indicates the error ID (see
COUNTER_ERROR for
details).

3) Function

 ■ The function block is used to reset the remote counter if faults or errors occur.

 ■ If the counter fails, execute the HC_Reset_ETC instruction to clear the fault. If the faults cannot be
cleared, power off and then restart the counting module.

 ■ If an error occurs on the function block, set Execute from TRUE to FALSE to clear the error flag.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in COUNTER_ERROR through the help
document, and find error causes.

6.5 Process Library

Function overview: Based on PLCopen function blocks, the function block integrates special processes,
including Modbus floating point reconstitution, anisotropic bilateral polishing, anchor electronic cam,
intelligent temperature control, auto-tuning PID, switching, and flying shear.

For more information, contact our technicians or visit our website (http://www.inovance.com/).

6.6 Others

To optimize our products, we provide practical function blocks, for example, bus reset and position saving
function blocks.

Note: In the library manager, you can add CmpHCBasic.libaray to the project to use all function blocks
described in the section.

-355-

Chapter 6 Inovance Instruction Library

6.6.1 MC_Jog_HC

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_Jog_HC
Jog function
block

MC_Jog_HC(

 Axis:= ,

 Reset:= ,

 JogForward:= ,

 JogBackward:= ,

 Velocity:= ,

 Acceleration:= ,

 Deceleration:= ,

 Jerk:= ,

 Busy=> ,

 CommandAborted=> ,

 Error=> ,

ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis AXIS_REF_SM3 N/A N/A AXIS_REF_SM3 variable

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

Reset Reset BOOL [FALSE,TRUE] FALSE

(Triggered by edges) It is set to
TRUE when the motion function
cannot be used. The function
block can be used.

JogForward JOG+ BOOL [FALSE,TRUE] FALSE
(Triggered by level) Indicates a
jog in the forward direction.

JogBackward JOG- BOOL [FALSE,TRUE] FALSE
(Triggered by level) Indicates a
jog in the reverse direction.

Velocity Speed LREAL (0, 1.7E 308) 0.0
Indicates the speed (unit: unit/
s).

Acceleration Acceleration LREAL (0, 1.7E 308) 0.0
Indicates the acceleration (unit:
unit/s2).

Deceleration Deceleration LREAL (0, 1.7E 308) 0.0
Indicates the deceleration (unit:
unit/s2).

Jerk Jerk LREAL (0, 1.7E 308) 0.0 Indicates the jerk (unit: unit/s3).

-356-

Chapter 6 Inovance Instruction Library

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE

When JogForward or
JogBackward is set to TRUE,
Busy is set to TRUE. Otherwise,
the axis slowly stops by
deceleration. When the axis state
machine is in Standstill state,
Busy is set to FALSE.

CommandAborted Abort flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that the function
block is aborted by another
function block.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function block.

ErrorID Error ID SMC_ERROR N/A NO_ERROR
Indicates the error ID (see SMC_
ERROR for details).

3) Function

 ■ Similar to MC_Jog, the function block is used to control axis jog in the forward or reverse direction.

 ■ When hardware limit is enabled in the process of stop by deceleration and the axis cannot jog, trigger
Reset so that the axis can jog.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in SMC_ERROR through the help
document, and find error causes.

-357-

Chapter 6 Inovance Instruction Library

6.6.2 MC_ResetDrive

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_ResetDrive
Reset of a
single servo
slave

MC_ResetDrive(

 Axis:= ,

 ETC_Master:= ,

 ETC_Slave:= ,

 Execute:= ,

 TimeOut:= ,

 Mode:= ,

 Done=> ,

 Busy=> ,

 Error=> ,

ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

Axis Axis AXIS_REF_SM3 N/A N/A AXIS_REF_SM3 variable

ECT_Master
EtherCAT
master

IoDrvEtherCAT N/A N/A
IoDrvEtherCAT variable, the EtherCAT
master name

ETC_Slave
EtherCAT
slave

ETCSlave N/A N/A
ETCSlave variable, the EtherCAT slave
name

 ■ Input variable

Input
Variable

Name Data Type Valid Range Initial Value Description

Execute Reset BOOL [FALSE,TRUE] FALSE
Triggered by edges, it is invalid at
rising edges.

TimeOut
Timeout
period

WORD [0,2^32-1] 1000

Indicates the timeout period for
communication state machine
switching (1000 scan cycles by
default).

If state machine switching timed
out, the state machine automatically
returns to the Init state, and the
process (Init > Pre-op > SafeOP > OP)
starts again.

Mode
Reset
mode

WORD [0,1] 1
0 indicates quick reset. 1 indicates
normal reset (as the reset time is long,
prevent the error Er.15 during reset).

-358-

Chapter 6 Inovance Instruction Library

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done Complete flag BOOL [FALSE,TRUE] FALSE
Indicates the reset complete
flag (TRUE: Slave and axis
reset).

Busy Execution flag BOOL [FALSE,TRUE] FALSE

When the execution is
triggered, Busy is set to TRUE.
When the command is set to
FALSE, the variable remains in
TRUE state, and the function
block execution fails or
succeeds.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function
block.

ErrorID Error ID SMC_ERROR N/A NO_ERROR
Indicates the error ID (see
SMC_ERROR for details).

3) Function

 ■ When a single servo is disconnected from slaves (the first slave excluded), it can be connected to
networks and used.

 ■ TimeOut indicates the number of scan cycles. The value is the timeout period multiplied by the
length of each scan cycle (ms).

 ■ 1 indicates normal reset. During reset, switch the axis to the security mode and wait 20 seconds to
avoid clock jitter caused by servo adjustment. 0 indicates quick reset. During reset, switch the axis to
security mode and directly reset the 402 state machine.

 ■ If the first slave is disconnected, the function block is inapplicable. You need to execute the global
function block ETHERCAT and trigger ETHERCAT.xReStart at a rising edge to restart the entire
network.

Example: Reset the slave IS620N_1 and master ETHERCAT where Axis_1 resides.

4) Sequence Diagram

-359-

Chapter 6 Inovance Instruction Library

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in SMC_ERROR through the help
document, and find error causes.

6.6.3 MC_ResetRemoteModule

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_ResetRemoteModule
Reset of a
single ECT
slave

MC_ResetRemoteModule(

 ETC_Slave:= ,

 Execute:= ,

 TimeOut:= ,

 Done=> ,

 Busy=> ,

 Error=> ,

ErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type Valid Range Initial Value Description

ETC_Slave EtherCAT slave ETCSlave N/A N/A
ETCSlave variable, the EtherCAT
slave name

 ■ Input variable

Input Variable Name
Data
Type

Valid Range Initial Value Description

Execute Reset BOOL [FALSE,TRUE] FALSE
Triggered by edges, it is invalid at rising
edges.

TimeOut
Timeout
period

WORD [0,2^32-1] 1000

Indicates the timeout period for
communication state machine switching
(1000 scan cycles by default).

If state machine switching timed out,
the state machine automatically returns
to the Init state, and the process (Init >
Pre-op > SafeOP > OP) starts again.

-360-

Chapter 6 Inovance Instruction Library

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

Done
Complete
flag

BOOL [FALSE,TRUE] FALSE
Indicates the reset complete
flag (TRUE: Slave reset).

Busy
Execution
flag

BOOL [FALSE,TRUE] FALSE

When the execution is
triggered, Busy is set to
TRUE. When the execution
command is set to FALSE,
Busy remains in TRUE state
until the function block
execution fails or succeeds.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function
block.

ErrorID Error ID SMC_ERROR N/A NO_ERROR
Indicates the error ID (see
SMC_ERROR for details).

3) Function

 ■ When a single ECT is disconnected from slaves (the first slave excluded), it can be connected to
networks and used.

 ■ TimeOut indicates the number of scan cycles. The value is the timeout period multiplied by the
length of each scan cycle (ms).

 ■ If the first slave is disconnected, the function block is inapplicable. You need to execute the global
function block ETHERCAT and trigger ETHERCAT.xReStart at a rising edge to restart the entire
network.

Example: Reset the ECT slave AM600_RTU_ECTA.

4) Sequence Diagram

5) Error Description

When an error occurs, locate the error corresponding to ErrorID in SMC_ERROR through the help
document, and find error causes.

-361-

Chapter 6 Inovance Instruction Library

6.6.4 MC_PersistPosition

1) Instruction Format

Graphic Expression

Instruction Name ST expression

MC_PersistPosition

Retentive at
power failure
function
block

MC_PersistPosition(

 Axis:= ,

PersistPositionSingleturn_Data:= ,

 bEnable:= ,

 Thresthold:= ,

 bPositionRestored=> ,

 bPositionStored=> ,

 bBoundary=> ,

 bBusy=> ,

 bError=> ,

eErrorID=>);

2) Relevant Variables

 ■ I/O variable

I/O Variable Name Data Type
Valid

Range
Initial
Value

Description

Axis Axis AXIS_REF_SM3 N/A N/A
AXIS_REF_SM3
variable

PersistPositionSingleturn_
Data

Structure
variable

SMC3_
PersistPositionSingleturn_
Data

N/A N/A
Structure variable
used to store axis
position data.

 ■ Input variable

Input Variable Name Data Type Valid Range Initial Value Description

bEnable Enabled BOOL [FALSE,TRUE] FALSE
Triggered by level, it is valid at
high level.

Threshold

Threshold
for encoder
pulses during
power-on/
power-off

UDINT [0,2^32-1] 16#800000

The axis moves after power-off.
When the distance is beyond
the threshold, the function
block reports a recovery error.

 ■ Output variable

Output Variable Name Data Type Valid Range Initial Value Description

bPositionRestored
Recovery
complete flag

BOOL [FALSE,TRUE] FALSE
TRUE indicates that recovery
succeeds.

bPositionStored Saving flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that data is
being saved.

bBoundary Boundary flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that the axis
is at the boundary.

-362-

Chapter 6 Inovance Instruction Library

Output Variable Name Data Type Valid Range Initial Value Description

Busy Execution flag BOOL [FALSE,TRUE] FALSE
When bEnable is triggered,
Busy is set to TRUE.

Error Error flag BOOL [FALSE,TRUE] FALSE
TRUE indicates that an error
occurs inside the function
block.

eErrorID Error ID MC_ERROR N/A NO_ERROR
Indicates the error ID (see
MC_ERROR for details).

3) Function

 ■ The function block is used to save absolute upper and lower positions of a single absolute value servo
axis.

 ■ SMC3_PersistPositionSingleturn_Data indicates the data structure.

 ■ The threshold is important. When the PLC is powered off, the object dictionary 16#6064 (32-bit
position sent by the servo to the PLC) is saved in the flash memory. When bEnable is set to TRUE, the
system reads the actual position from the flash memory during startup. When the system bus can be
used for PDO communication, the system reads the current position of the servo axis. If the absolute
value of (read position - current position) is above the threshold, the system determines that recovery
failed, and bError is set to TRUE (even if the recovered data is correct). To prevent the system from
moving after power-off, you can increase the threshold, but keep it no greater than 2^31-1. Otherwise,
you cannot determine whether the motor passes the boundary after power-off.

 ■ bPositionRestored must be set to TRUE with the flag of successful recovery of servo axis position
data, which can be detected through rising edges. Before the absolute servo moves, you need to
confirm that bPositionRestored is set to TRUE. Otherwise, a collision may occur.

 ■ The function block detects in each cycle whether an axis stops at the boundary. If bBoundary is set
to TRUE, the axis is near the boundary (16#7F000000 < Axis .dwActPosition < 16#81000000). In this
case, position data recovery may fail if you restart the PLC. Therefore, it is not recommended that you
power off the PLC.

 ■ If the servo is used with an Inovance IS62N model, adjust two servo parameters: select the absolute
linear mode and block the absolute position overflow alarm.

 ■ Set the MC_PersistPosition to the value at the beginning of program scan and set the default
initial value of bEnable to TRUE. In this way, the system can scan the function block after being
powered on.

-363-

Chapter 6 Inovance Instruction Library

The following details SMC3_PersistPositionSingleturn_Data.

Member Type Initial Value Description

fOffsetPosition LREAL 0 Position offset

dwPosOffsetForResiduals DWORD 0 Residual position offset error

dwActPosition DWORD 0 Current encoder position

iIncrementsCompensated INT 0 --

iTurn INT 0 PLC-calculated overflow count

wCheckSum WORD 0 Check value

4) Sequence Diagram

5) Error Description

The following table describes errors corresponding to eErrorID in MC_ERROR.

Member Type Enumerated Value Description

MC_NO_ERROR INT 0 No error

MC_PP_CRC_ERROR INT 20000 Data recovery error, CRC error

MC_PP_THRESTHOLD_EXCEEDED INT 20001
Difference between the current position and
the saved position above the threshold

-364-

Chapter 6 Inovance Instruction Library

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Memo No. ___________

Date / /

Chapter 7 Diagnosis

7.1 Overview ..366
7.2 Configuration Diagnosis ...366

7.2.1 Network Configuration Diagnosis ..366
7.2.2 Hardware Configuration Diagnosis ..368

7.3 Fault Diagnosis ..368
7.4 List of Device Self-diagnosis Information ..370

7.4.1 CPU Diagnosis ..370
7.4.2 EtherCAT Diagnosis ..370
7.4.3 I/O Diagnosis ..371
7.4.4 CANopen Diagnosis ...371
7.4.5 PROFIBUS DP Diagnosis ..371
7.4.6 Modbus RTU Diagnosis ..376
7.4.7 Modbus TCP Diagnosis ..376
7.4.8 CANlink Diagnosis ..376

7.5 Diagnosis Programming Interface ...377
7.5.1 Overview ...377
7.5.2 CPU Diagnosis Programming Interface ..378
7.5.3 CANopen Diagnosis Programming Interface ...380
7.5.4 PROFIBUS DP Diagnosis Programming Interface ..382
7.5.5 CANlink Diagnosis Programming Interface ..384
7.5.6 Modbus Diagnosis Programming Interface ...385
7.5.7 Modbus TCP Diagnosis Programming Interface ..387
7.5.8 CPU Stop Control ...389
7.5.9 EtherCAT Diagnosis ..389

-366-

Chapter 7 Diagnosis

7 Diagnosis
7.1 Overview

Diagnosis aims to quickly locate errors occurring while the PLC is running so that you can find solutions
based on error information and status. The InoProShop diagnosis page can be accessed and displayed
only when you log in to the PLC.

The InoProShop programming system can diagnose various communication devices and generate
messages indicating faults, disconnection, and other errors based on the running status of devices.

Modules involved in fault diagnosis include CPU module, Modbus module, Modbus TCP module, EtherCAT
module, CANopen module, CANlink module, and PROFIBUS DP module.

The InoProShop programming system allows you to obtain diagnosis information through the
configuration diagnosis, list of diagnosis information, list of device self-diagnosis information, or diagnosis
programming interface.

All diagnosis information is parsed and obtained through diagnosis codes. Diagnosis codes correspond to
diagnosis programming interfaces.

7.2 Configuration Diagnosis

Configuration can be classified into network configuration and hardware configuration. The corresponding
diagnosis can be classified into network configuration diagnosis and hardware configuration diagnosis.
In configuration, the diagnosis state of each communication module is displayed through different icons:
Running state, Stopped state, Disconnected state, and Faulty state.

: Running state: The device is running without faults.

: Stopped state: The device is stopped.

: Disconnected state: The device is disconnected or the device does not exist.

: Faulty state: The device is faulty and cannot run.

The device status is displayed on the configuration page.

7.2.1 Network Configuration Diagnosis

You can configure a PLC bus system, activate the bus, and add slaves. Log in to the system and access the
network configuration page. The diagnosis state of each communication device is displayed, as shown in
the following figure.

file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss

-367-

Chapter 7 Diagnosis

Figure 7-1 Network configuration diagnosis
After you log in, the status of each slave or CPU is displayed on the network configuration page: Running
state, Faulty state, or Disconnected state. For details about network configuration, see hardware
configuration.

file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss
file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss

-368-

Chapter 7 Diagnosis

-368-

7.2.2 Hardware Configuration Diagnosis

Hardware configuration is mainly used to add expansion modules corresponding to the bus, including
local I/O hardware configuration, EtherCAT hardware configuration, and CANopen hardware configuration.
CANlink, Modbus, and Modbus TCP modules are displayed only on the network configuration page. You
can double click a network configuration subnode or slave module to access the hardware configuration
page, or select another hardware configuration mode on the hardware configuration page. The hardware
configuration diagnosis is similar to the network configuration diagnosis. The following figure shows
CANopen hardware configuration diagnosis.

Figure 7-2 CANopen hardware configuration diagnosis

7.3 Fault Diagnosis

Fault diagnosis displays all device fault information, provides details about faults and troubleshooting,
and provides diagnosis details under special circumstances.

After the device is connected, you can choose Tool > Troubleshooting to access the fault diagnosis page.
The following figure shows the Fault Diagnosis page.

file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss

-369-

Chapter 7 Diagnosis

-369-

Figure 7-3 Fault diagnosis page
Function

 ■ Device Type window: On this window, device fault types are displayed, and fault information can
be filtered based on the specific device type. Devices can be classified into CPU module, Modbus
module, Modbus TCP module, local module, EtherCAT module, and CANopen module. Diagnosis
information of corresponding types is displayed on the diagnosis list. By default, diagnosis
information corresponding to all devices is displayed.

 ■ Buttons

a. Module name: Module names corresponding to different device types are included. By default,
module names corresponding to all devices are included. You can use this button with the Search
button to search for data.

b. Search: This button is used for Search and Filter operations based on a specific module or module
name. Fuzzy search is supported.

c. Refresh: This button is used to refresh fault information.

d. Export: This button is used to export data from the list of fault information. The exported diagnosis
information is in CSV format.

 ■ List of fault information: It is used to display module fault information, including the device type,
module name, and faults.

 ■ Detail window: When you select a piece of fault information from the list of fault information, details
about the fault are displayed in the Detail window. In this window, Detail, Troubleshooting, and
Deep Diagnosis options are available.

a. Detail: Fault causes are described in the first column, which is followed by four columns of extra
fault information.

-370-

Chapter 7 Diagnosis

b. Troubleshooting: Methods of troubleshooting are displayed.

c. Deep Diagnosis: For complex errors, more information is available to locate errors. Note: This
option is not available for all error information. It is currently available for EtherCAT faults (master
errors, slave errors, and ECTA module errors).

7.4 List of Device Self-diagnosis Information

In addition to the summary list of device diagnosis information, module self-diagnosis information is
available on the device module page. The diagnosis state and code are displayed on the list of module
self-diagnosis information. The following figure shows an example of Modbus RTU slave diagnosis dialog
box.

Figure 7-4 Modbus RTU slave self-diagnosis list dialog box
Diagnosis State

 ■ No. indicates the diagnosis number.

 ■ DiagnoseState indicates the current device diagnosis information.

 ■ Code corresponds to diagnosis information. Some diagnosis information is parsed through the
device state or device flag bit without a diagnosis code. For example, for the EtherCAT fault diagnosis
and Modbus RTU and Modbus TCP master-slave flag bit diagnosis, only diagnosis information is
displayed.

Devices with a self-diagnosis page include EtherCAT, CANopen, PROFIBUS DP, Modbus RTU, Modbus TCP,
high-speed I/O, and I/O modules. No diagnosis page is available for CPU and CANlink modules. You can
check diagnosis information on the list of diagnosis information.

7.4.1 CPU Diagnosis

No diagnosis page is available for a CPU. You can check diagnosis information on the list of diagnosis
information.

For CPU diagnosis codes and diagnosis information, see CPU Diagnosis Code.

For descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis
information.

7.4.2 EtherCAT Diagnosis

EtherCAT diagnosis is used to record and describe bus errors, including master diagnosis, slave diagnosis,
slave module diagnosis, and slave drive diagnosis. EtherCAT diagnosis only parses errors of Inovance
slaves. For details about diagnosis methods, see Section "7.3 Fault Diagnosis". Error IDs are listed in
appendixes to this document.

In some application scenarios, error IDs are displayed on the touchscreen. You only need to assign the
variable m_LastError for the EtherCAT master to a variable associated with the HMI address. As shown
in the following figure, HMI_LastError is a word variable associated with the HMI address. IDs of errors
diagnosed for EtherCAT are displayed on the touchscreen.

-371-

Chapter 7 Diagnosis

AM600 EtherCAT Slave Diagnosis

The following table lists the CANopen Emergency frame formats corresponding to the EtherCAT AM600
slave.

Emergency Error Code Error Register Manufacturer-specific Error Region

BYTE0 BYTE1 BYTE2 BYTE3 BYTE4 BYTE5 BYTE6 BYTE7

BaseInfo SlaveError 0x80 InterCommError ConformenceError IOModulePosError

NOTE

The error register value 0x80 indicates the Emergency frame of the slave.

BaseInfo is not in use. For other diagnosis codes and diagnosis information, see CANopen Diagnosis Code.
If the device is diagnosed in this format, the data is parsed into corresponding diagnosis information.
Otherwise, the data is parsed into a message "An error occurred".

For descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis
information.

7.4.3 I/O Diagnosis

The I/O module can be added to the CPU, CANopen AM600 slave, PROFIBUS DP AM600 slave, or EtherCAT
AM600 slave. The CPU and slaves share the same diagnosis information. For diagnosis codes and
diagnosis information, see I/O Module Diagnosis Code.

For descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis
information.

7.4.4 CANopen Diagnosis

CANopen diagnosis information is obtained through the Emergency frame. On the Debug page of each
slave, you can check the online status of the slave, diagnosis strings, and emergency information.

A device diagnosis page is available for the AM600 slave, used for special diagnosis of the station. For
diagnosis codes and diagnosis information, see CANopen Diagnosis Code. For descriptions of the
self- diagnosis page, see the overview of the list of device self-diagnosis information.

You can also obtain the CANopen slave status through CANopen special soft elements.

7.4.5 PROFIBUS DP Diagnosis

The PROFIBUS DP diagnosis refers to the PROFIBUS DP slave diagnosis. Data is included in the diagnosis
array. Each slave has a Slave Diagnosis page, as shown in the following figure, on which slave diagnosis
information is displayed. For non-AM600 modules of the slave, diagnosis information is displayed on
the Slave Diagnosis page. For the I/O module of the AM600 PROFIBUS DP slave, diagnosis information is
displayed on the diagnosis page of the I/O module. For details, see I/O Diagnosis.

file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss
file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss

-372-

Chapter 7 Diagnosis

The PROFIBUS DP channel diagnosis can be classified into defined channel diagnosis and GSD file-
defined channel diagnosis. For details, see PROFIBUS DP Diagnosis Overview.

Figure 7-5 PROFIBUS DP Slave Diagnosis
 ■ Master address: Indicates the address of the master, which corresponds to the 4th byte in the

diagnosis array.

 ■ ID: Indicates the slave-defined ID, which corresponds to the 5th and 6th bytes in the diagnosis array.
The GSD file also defines the ID.

 ■ Hex format: Diagnosis array data is displayed in hex format.

 ■ Standard diagnosis: Indicates status diagnosis and identifier diagnosis included in the basic
diagnosis and expanded diagnosis of slaves. For details, see PROFIBUS DP Diagnosis Overview.

 ■ Channel diagnosis: Indicates the channel diagnosis included in the expanded diagnosis of slaves,
including defined channel diagnosis and GSD file-defined channel diagnosis. For details, see DP
Diagnosis Overview.

PROFIBUS DP Diagnosis Overview

The following table shows the diagnosis array structure.

Table 7-1 Diagnosis array structure

First Six Bytes Indicating
Basic Diagnosis

Information (mandatory)

Alarm or Status
Information Block

(4-63 bytes) (optional)

Flag Module Diagnosis
Information Block

(optional)

Channel Diagnosis Information
Block (3 bytes per channel)

(optional)

1--------------------------6 basic
diagnosis information

7--244 expanded diagnosis
information

A data unit (DU) contains a minimum of 6 bytes and a maximum of 244 bytes.

-373-

Chapter 7 Diagnosis

1) Basic Diagnosis Information

2) Expanded Diagnosis Information

Expanded diagnosis includes status diagnosis, identifier diagnosis, and channel diagnosis.

 ■ Status diagnosis

7th byte:

-374-

Chapter 7 Diagnosis

8th byte:

When bit 7 is 1, it indicates status diagnosis information, and bits 0 to 6 correspond to the following status
information types, respectively.

0: Reserved

1: Indicates that the byte corresponding to status details is followed by status information.

2: Indicates that the byte corresponding to status details is followed by module status information
(affecting the bytes following the ninth byte).

3-31: Reserved

32-126: Indicates that the byte corresponding to status details is followed by special manufacturer data.

127: Reserved

9th byte: Indicates the slot number of the slave reporting an error, ranging from 0 to 254.

10th byte: Indicates detailed features of a state.

Byte following the 11th byte: Indicates a user data byte.

If the 8th byte corresponds to status type 2, that is, module status information, the 9th byte is 0; that is,
the slave slot number is 0. Therefore, bytes following the 11th byte are no longer user data bytes. The
following describes the structure and definition.

12th byte: Indicates the status of modules 5 to 8.

Bytes that follow can be arranged based on the preceding rule until information on all modules is entered.

-375-

Chapter 7 Diagnosis

 ■ Identifier diagnosis

If the number of modules exceeds 8, you can continue using bytes that follow to specify flag byte numbers
(or module numbers).

 ■ Channel diagnosis

Each piece of channel diagnosis information contains 3 bytes. Channel diagnosis includes diagnosis
information for multiple channels. The following table shows the structure of diagnosis information
for one channel.

Head Byte Diagnosis Data Byte Relating to Channel

10×××××× 2 bytes (3 bytes if the head byte is included)

The head byte specifies the type of channel diagnosis information and the number of a faulty module.
The following describes the structure and definition of the head byte.

-376-

Chapter 7 Diagnosis

7.4.6 Modbus RTU Diagnosis

Modbus RTU supports buses of Modbus serial ports 0 and 1. Modbus serial port 0 or 1 can serve as a
Modbus master or Modbus slave.

When a Modbus serial port serves as a master, you can add slaves (remote). On both master configuration
page and slave configuration page, the Device Diagnosis option is displayed. Master diagnosis
information is used to identify slave configuration faults without fault causes. Therefore, no fault codes
are displayed on the Device Diagnosis page. On the Device Diagnosis page for a slave, fault information
corresponding to specific configuration items is displayed.

When a Modbus serial port serves as a slave, a Device Diagnosis page is available, on which master-slave
communication faults are displayed. For details, see the list of device self-diagnosis information.

The diagnosis codes and diagnosis information for a Modbus serial port remain unchanged whether it
serves as a master or a slave. See Modbus diagnosis codes for details.

7.4.7 Modbus TCP Diagnosis

An AM600 PLC can serve as a Modbus TCP master or a Modbus TCP slave.

When a Modbus TCP device serves as a master, you can add slaves (remote). On both master configuration
page and slave configuration page, the Device Diagnosis option is displayed. Master diagnosis
information is used to identify slave configuration faults without fault causes. Therefore, no fault codes
are displayed on the Device Diagnosis page. On the Device Diagnosis page for a slave, fault information
corresponding to specific configuration items is displayed.

When a Modbus TCP device serves as a slave, a Device Diagnosis page is available, on which master-slave
communication faults are displayed. For details, see the list of device self-diagnosis information.

The diagnosis codes and diagnosis information for a Modbus TCP device remain unchanged whether it
serves as a master or a slave. See Modbus diagnosis codes for details.

7.4.8 CANlink Diagnosis

No Device Diagnosis page is available for CANlink devices. However, you can enable the monitoring
function on the CANlink network management page to check the online status and running status of the
slave. For details, see CANlink Network Management.

You can check the status of CANlink stations through soft elements. For details, see CANlink Soft Elements.

file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss
file:///D:\Program%20Files\My%20RTX%20Files\z1914\�޸ĺ�-������0801\AppData\Roaming\19010334-SC_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\19010334-SCY_A00(19010334��AM600ϵ�пɱ���߼�����������ֲᡷ\AM600����ֲ�-ͬ��������������ӻ���ָ��-word��������\ss

-377-

Chapter 7 Diagnosis

After logging in to the PLC, you can view CANlink diagnosis information from the list of diagnosis
information. For CANlink diagnosis codes and diagnosis information, see CANlink Diagnosis Code.

For descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis
information.

7.5 Diagnosis Programming Interface

Note: Only AM400 and AM600 models support this function.

7.5.1 Overview

A diagnosis programming interface allows you to obtain diagnosis information from user programs: you
can check diagnosis information for modules in user programs and take action based on the information.

A diagnosis programming interface exists in library form. You can add it on the Library Manager interface,
as shown in the following figure.

Programming interfaces include diagnosis programming interfaces corresponding to CANlink, CANopen,
CPU, Modbus, Modbus TCP, and PROFIBUS DP modules, respectively. Each diagnosis corresponds to one
function block so that you can obtain corresponding diagnosis codes.

User-defined diagnosis results and diagnosis states are defined in DataType. HC_enumERROR indicates
whether diagnosis succeeds, as shown in the following table.

Enumerator (hexadecimal) Value (decimal) Description
NO_ERROR 0 No error
WRONG_PARAMETER 1 Parameter error
UNKNOWN_DEVICEID 2 Unknown device ID
INVAILD_DEVICEID 3 Invalid device ID
INVAILD_IO_POS 4 Invalid I/O position
UNSUPPORT_DIAGNOSE 5 Unsupported diagnosis
TIME_OUT 6 Timeout
INTERNAL_FB_ERROR 7 Internal function block error
UNKNOWN_ERROR 8 Unknown error
INVAILD_IP 9 Invalid IP address

-378-

Chapter 7 Diagnosis

7.5.2 CPU Diagnosis Programming Interface

1 CPU Diagnosis Programming Interface

Obtaining CPU Diagnosis Data: GET_CPU_DIAGNOSE

Parameter Name Parameter Type Initial Value Description
Input parameter

xEnable BOOl FALSe
Indicates the enabling bit,
triggered by level.

Output parameter

xDone Bool FALSE
Indicates whether the diagnosis
result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the diagnosis
result is obtained.

sCPUDiagnoseData HC_tagDIAGNOSE_DATA_CPU Indicates CPU diagnosis data.

HC_tagDIAGNOSE_DATA_CPU data is structure data, as shown in the following table. The correlation
between the diagnosis code and diagnosis information is detailed in CPU Diagnosis Code.

Name Type

SDCardError BYTE

FlashError BYTE

SystemError BYTE

InterCommError BYTE

ConformenceError WORD

IOModulePosError WORD

FunctionErrorCode WORD

Example

PROGRAM POU

VAR

 get_cpu_diag: GET_CPU_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 sCPUDiag: HC_tagDIAGNOSE_DATA_CPU;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-379-

Chapter 7 Diagnosis

2 CPU Local I/O Expansion Module

Obtaining CPU I/O Diagnosis Data: GET_CPU_IOMODULE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description

Input parameter

xEnable BOOl FALSe
Indicates the enabling bit,
triggered by level.

byModulePos BYTE (1..16) 0
Indicates the obtained I/O
position.

Output parameter

xDone Bool FALSE
Indicates whether
the diagnosis result is
obtained.

eError HC_enumERROR NO_ERROR
Indicates whether
the diagnosis result is
obtained.

sIODiagnoseData HC_tagDIAGNOSE_DATA_IOMODULE
Indicates I/O diagnosis
data.

HC_tagDIAGNOSE_DATA_IOMODULE data is structure data, as shown in the following table. The
correlation between the diagnosis code and diagnosis information is detailed in I/O Diagnosis Code.

Structure Member Type Description

ModuleError BYTE Indicates the module error.

ChannelError ARRAY[0..3] OF BYTE Indicates the channel error.

Example

PROGRAM POU

VAR

 get_cpu_iomodule_diag: GET_CPU_IOMODULE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 byModulePos: BYTE (1..16);

 sIODiag: HC_tagDIAGNOSE_DATA_IOMODULE;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-380-

Chapter 7 Diagnosis

7.5.3 CANopen Diagnosis Programming Interface

1 CANopen Slave Diagnosis Programming Interface

Obtaining CANopen Slave Diagnosis Data: GET_CANOPEN_SLAVE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description
Input parameter

xEnable BOOl FALSe
Indicates the enabling bit,
triggered by level.

bySlaveID BYTE (1..127) 0
Indicates the obtained slave node
ID, ranging from 1 to 127.

Output parameter

xDone Bool FALSE
Indicates whether the diagnosis
result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the diagnosis
result is obtained.

sSlaveDiagnoseData HC_tagDIAGNOSE_DATA_SLAVE
Indicates CANopen slave
diagnosis data.

HC_tagDIAGNOSE_DATA_SLAVE data is structure data, as shown in the following table. The correlation
between the diagnosis code and diagnosis information is detailed in CANopen Diagnosis Code.

Structure Member Type Description
SlaveError BYTE Indicates the slave error.

InterCommError BYTE
Indicates the internal communication
error.

ConformenceError WORD Indicates the consistency error.
IOModulePosError WORD Indicates the I/O module position error.

Example

PROGRAM POU

VAR

 get_CANOpen_slave_diag: GET_CANOPEN_SLAVE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 bySlaveId: BYTE (1..127);

 sSlaveDiag: HC_tagDIAGNOSE_DATA_SLAVE;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-381-

Chapter 7 Diagnosis

2 CANopen Slave I/O Diagnosis Programming Interface

Obtaining CANopen Slave I/O Diagnosis Data: GET_CANOPEN_IOMODULE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description
Input parameter

xEnable BOOl FALSE
Indicates the enabling bit,
triggered by level.

bySlaveID BYTE (1..127) 0
Indicates the slave node ID,
ranging from 1 to 127.

byModulePos BYTE (1..16) 0
Indicates the diagnosed I/O
position.

Output parameter

xDone Bool FALSE
Indicates whether the
diagnosis result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the
diagnosis result is obtained.

sIODiagnoseData HC_tagDIAGNOSE_DATA_IOMODULE
Indicates I/O diagnosis
data.

HC_tagDIAGNOSE_DATA_IOMODULE data is structure data, as shown in the following table. The
correlation between the diagnosis code and diagnosis information is detailed in I/O Diagnosis Code.

Structure Member Type Description

ModuleError BYTE Indicates the module error.

ChannelError ARRAY[0..3] OF BYTE Indicates the channel error.

Example

PROGRAM POU

VAR

 get_CANOpen_iomodule_diag: GET_CANOPEN_IOMODULE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 bySlaveId: BYTE (1..127);

 byModulePos: BYTE (1..16);

 sIODiag: HC_tagDIAGNOSE_DATA_IOMODULE;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-382-

Chapter 7 Diagnosis

7.5.4 PROFIBUS DP Diagnosis Programming Interface

1 PROFIBUS DP Slave Diagnosis Programming Interface

Obtaining DP Slave Diagnosis Data: GET_DP_SLAVE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description
Input parameter

xEnable BOOl FALSe
Indicates the enabling bit, triggered by
level.

bySlaveID BYTE (1..125) 0
Indicates the obtained slave address,
ranging from 1 to 125.

Output parameter

xDone Bool FALSE
Indicates whether the diagnosis result
is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the diagnosis result
is obtained.

sSlaveDiagnoseData HC_tagDIAGNOSE_DATA_SLAVE_DP Indicates DP slave diagnosis data.

HC_tagDIAGNOSE_DATA_SLAVE_DP data is structure data, as shown in the following table. The correlation
between the diagnosis code and diagnosis information is detailed in DP Diagnosis Code.

Structure Member Type Description

Length BYTE Indicates the diagnosis data length.

ExtDiagData ARRAY[0..243]OF BYTE Indicates diagnosis data.

Example

PROGRAM POU

VAR

 get_dp_slave_diag: GET_DP_SLAVE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 bySlaveID: BYTE (1..125);

 sSlaveDiagData: HC_tagDIAGNOSE_DATA_SLAVE_DP;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-383-

Chapter 7 Diagnosis

2 PROFIBUS DP Slave I/O Diagnosis Programming Interface

Obtaining DP Slave I/O Diagnosis Data: GET_DP_IOMODULE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description

Input parameter

xEnable BOOl FALSE
Indicates the enabling bit,
triggered by level.

bySlaveID BYTE (1..125) 0
Indicates the slave address,
ranging from 1 to 125.

byModulePos BYTE (1..16) 0
Indicates the diagnosed I/O
position.

Output parameter

xDone Bool FALSE
Indicates whether the diagnosis
result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the diagnosis
result is obtained.

sIODiagnoseData HC_tagDIAGNOSE_DATA_IOMODULE Indicates I/O diagnosis data.

HC_tagDIAGNOSE_DATA_IOMODULE data is structure data, as shown in the following table. The
correlation between the diagnosis code and diagnosis information is detailed in I/O Diagnosis Code.

ModuleError BYTE

ChannelError ARRAY [0..3] OF BYTE

Example

PROGRAM POU

VAR

 get_dp_iomodule_diag: GET_DP_IOMODULE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 bySlaveID: BYTE (1..125);

 byModulePos: BYTE (1..16);

 sIODiagData: HC_tagDIAGNOSE_DATA_IOMODULE;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-384-

Chapter 7 Diagnosis

7.5.5 CANlink Diagnosis Programming Interface

Obtaining CANlink Diagnosis Data: GET_CANLINK_DIAGNOSE

Parameter Name Parameter Type Initial Value Description

Input parameter

xEnable BOOl FALSe
Indicates the enabling bit,
triggered by level.

byStationID BYTE (1..63) 0
Indicates the obtained station
node ID, ranging from 1 to 63.

Output parameter

xDone Bool FALSE
Indicates whether the diagnosis
result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the diagnosis
result is obtained.

sCanlinkDiagnoseData HC_tagDIAGNOSE_DATA_CANLINK
Indicates CANlink station
diagnosis data.

HC_tagDIAGNOSE_DATA_CANLINK data is structure data, as shown in the following table. The correlation
between the diagnosis code and diagnosis information is detailed in CANlink Diagnosis Code.

Structure Member Type Description

IsUsed BOOL Indicates whether it is used.

IsMaster BOOL Indicates whether it is the master.

StationStatus WORD Indicates the CANlink station status.

CfgFrameError WORD Indicates the configuration frame error.

CmdFrameError WORD Indicates the command frame error.

Example

PROGRAM POU

VAR

 get_canlink_diagnose:GET_CANLINK_DIAGNOSE;

 Enable: BOOL;

 StationId: BYTE (1..63);

 eError: HC_enumERROR;

 canLinkDiagData: HC_tagDIAGNOSE_DATA_CANLINK;

 xDone: BOOL;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-385-

Chapter 7 Diagnosis

7.5.6 Modbus Diagnosis Programming Interface

1 Modbus Local Slave Diagnosis Programming Interface

Obtaining Modbus Local Slave Diagnosis Data: GET_MODBUS_SLAVE_DEVICE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description

Input parameter

xEnable BOOl FALSe Indicates the enabling bit, triggered by level.

byComID BYTE (0..1) 0
Indicates the serial port number for the local slave,
ranging from 0 to 1.

Output parameter

xDone Bool FALSE Indicates whether the diagnosis result is obtained.

eError HC_enumERROR NO_ERROR Indicates whether the diagnosis result is obtained.

byDiagData Byte
Indicates the diagnosis code. The correlation
between the diagnosis code and diagnosis
information is detailed in Modbus Diagnosis Code.

Example

PROGRAM POU

VAR

 get_modbus_slave_dev_diag: GET_MODBUS_SLAVE_DEVICE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 byComId: BYTE (0..1);

 byDiagData: BYTE;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-386-

Chapter 7 Diagnosis

2 Modbus Remote Slave Diagnosis Programming Interface

Obtaining Modbus Remote Slave Diagnosis Data: GET_MODBUS_SLAVE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description

Input parameter

xEnable BOOl FALSE
Indicates the enabling bit, triggered
by level.

byComID BYTE (0..1) 0
Indicates the serial port number for
the master, ranging from 0 to 1.

bySlaveID BYTE (1..247) 0
Indicates the slave address, ranging
from 1 to 247.

Output parameter

xDone Bool FALSE
Indicates whether the diagnosis
result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the diagnosis
result is obtained.

sDiagData HC_tagDIAGNOSE_DATA_SLAVE_MODBUS Indicates slave diagnosis data.

HC_tagDIAGNOSE_DATA_SLAVE_MODBUS data is structure data, as shown in the following table. The
correlation between the diagnosis code and diagnosis information is detailed in Modbus Diagnosis Code.

Name Type
ChannelNum BYTE

DiagData BYTE

Example

PROGRAM POU

VAR

 get_modbus_slave_diag: GET_MODBUS_SLAVE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 byComId: BYTE (0..1);

 bySlaveId: BYTE (1..247);

 sDiagData: HC_tagDIAGNOSE_DATA_SLAVE_MODBUS;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-387-

Chapter 7 Diagnosis

7.5.7 Modbus TCP Diagnosis Programming Interface

Modbus TCP Local Slave Diagnosis Programming Interface

Obtaining Modbus TCP Local Slave Diagnosis Data: GET_MODBUSTCP_SLAVE_DEVICE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description

Input parameter

xEnable BOOl FALSe Indicates the enabling bit, triggered by level.

Output parameter

xDone Bool FALSE Indicates whether the diagnosis result is obtained.

eError HC_enumERROR NO_ERROR Indicates whether the diagnosis result is obtained.

byDiagData Byte
Indicates the diagnosis code. The correlation
between the diagnosis code and diagnosis
information is detailed in Modbus Diagnosis Code.

Example

PROGRAM POU

VAR

 get_modbustcp_slave_dev_diag: GET_MODBUSTCP_SLAVE_DEVICE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 byDiagData: BYTE;

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-388-

Chapter 7 Diagnosis

Modbus TCP Remote Slave Diagnosis Programming Interface

Obtaining Modbus TCP Remote Slave Diagnosis Data: GET_MODBUSTCP_SLAVE_DIAGNOSE

Parameter Name Parameter Type Initial Value Description

Input parameter

xEnable BOOl FALSE
Indicates the enabling bit, triggered
by level.

strSlaveIP STRING(15) ‘’
Indicates the remote slave IP
address.

Output parameter

xDone Bool FALSE
Indicates whether the diagnosis
result is obtained.

eError HC_enumERROR NO_ERROR
Indicates whether the diagnosis
result is obtained.

sDiagData HC_tagDIAGNOSE_DATA_SLAVE_MODBUS Indicates slave diagnosis data.

HC_tagDIAGNOSE_DATA_SLAVE_MODBUS data is structure data, as shown in the following table. The
correlation between the diagnosis code and diagnosis information is detailed in Modbus Diagnosis Code.

Name Type

ChannelNum BYTE

DiagData BYTE

Example

PROGRAM POU

VAR

 get_modbustcp_slave_diag: GET_MODBUSTCP_SLAVE_DIAGNOSE;

 Enable: BOOL;

 eError: HC_enumERROR;

 xDone: BOOL;

 sDiagData: HC_tagDIAGNOSE_DATA_SLAVE_MODBUS;

 strSlaveIP: STRING(15);

END_VAR

file:///D:\Program%20Files\My%20RTX%20Files\z1914\x1273\Documents\My%20RTX%20Files\1273\ss

-389-

Chapter 7 Diagnosis

7.5.8 CPU Stop Control

Description of function blocks

Stopping Application Program: STOP_APPLICATION

Parameter Name Parameter Type Initial Value Description

Input parameter

xExecute BOOL FALSE
Indicates the enabling bit, triggered by
rising edges.

Output parameter

xDone BOOL FALSE Indicates execution complete output.

Example

PROGRAM POU

VAR

 stop_app: STOP_APPLICATION;

 xExecute: BOOL;

END_VAR

7.5.9 EtherCAT Diagnosis

EtherCAT diagnosis is used to record and describe bus errors, including master diagnosis, slave diagnosis,
slave module diagnosis, and slave drive diagnosis. EtherCAT diagnosis only parses errors of Inovance
slaves. For details about diagnosis methods, see Section 7.3 Fault Diagnosis. Error IDs are listed in
appendices to this document.

In some application scenarios, error IDs are displayed on the touchscreen. You only need to assign the
variable m_LastError for the EtherCAT master to a variable associated with the HMI address. As shown
in the following figure, HMI_LastError is a word variable associated with the HMI address. IDs of errors
diagnosed for EtherCAT are displayed on the touchscreen.

__

__

Memo No. ___________

Date / /

-391-

Appendix

Appendix

Appendix A Communication Protocols for Communication Ports ..392

A.1 Mini-USB Port and Built-in Communication Protocol..392

A.2 COM0/COM1 Communication Port and Built-in Protocol ..392

A.3 CANopen Communication Protocol ..393

A.4 CANlink Communication Protocol ..393

A.5 EtherNET Port and Communication Protocol ..394

A.6 EtherCAT Port and Communication Protocol ...394

A.7 High-speed I/O Interface ..394

A.8 Mini-SD Card Slot ..394

A.9 Local Bus Expansion Interface ...394

A.10 PROFIBUS DP Port ..394

Appendix B Soft Element ..395

Appendix C Cheat Sheet of Basic Instructions ..396

Appendix D Guide to PLC Programming Software Upgrade ..398

Appendix E High-speed I/O Compatibility ..409

Appendix F Diagnosis Code and Diagnosis Information ..416

-392-

Appendix

Appendix
Appendix A Communication Protocols for Communication Ports

By default, medium-sized PLCs are provided with Mini-USB ports, serial communication ports, Ethernet
ports, EtherCATports, Mini-SD card slots, CAN communication ports, PROFIBUS DP communication
ports, high-speed I/O interfaces, and local bus expansion interfaces. The following describes how to set
protocols for ports.

A.1 Mini-USB Port and Built-in Communication Protocol

The Mini-USB port is used to download PLC user programs, monitor and debug the system. Therefore, the
port has a specific communication protocol, and you do not need to select one. As long as a USB drive is
installed on the PC, you can use InoProShop to download or monitor user programs of the medium-sized
PLC on the PC at any time.

As the built-in download protocol for the Mini-USB port is a special protocol of Inovance, you cannot
download programs of medium-sized PLCs through third-party programming software.

After the InoProShop programming software is installed for the first time, the USB drive is automatically
installed. To install different versions of InoProShop on one PC, you need to install them in different
directories.

A.2 COM0/COM1 Communication Port and Built-in Protocol

COM0 and COM1 ports are basic ports of a PLC for external communication. They are integrated on one
DB9 physical port, mainly used for RS-485 or Modbus communication.

The following table lists protocols supported by COM0 and COM1 ports as well as definitions of set units.

COM0/COM1 Protocol
Half-duplex/Full-

duplex Mode
Communication

Format
Baud Rate

Data
Bit

Stop Bit Parity Check

Modbus-RTU master Half-duplex Fixed
4,800 Bits/s

9,600 Bits/s

19,200 Bits/s

38,400 Bits/s

57,600 Bits/s

115,200 Bits/s

7bit

8bit

1bit

2bit

NONE

ODD

EVEN

Modbus-RTU slave Half-duplex Fixed 8bit

RS-485 free protocol Half-duplex Unfixed 8bit

Modbus-ASCII master Not supported N/A N/A N/A N/A N/A

Modbus-ASCII slave Not supported N/A N/A N/A N/A N/A

The following describes the preceding protocols.

 ■ Modbus master protocol

As a control host, the PLC usually uses this protocol to communicate with AC drives, servos, and other
lower computers, or to read data from smart meters and sensors. PLCs communicate with each other
through Modbus protocols, improving the flexibility of communication.

-393-

Appendix

 ■ Modbus slave protocol

A host computer reads internal PLC data usually through Modbus protocols. The PLC serves as a
communication slave. When you set the port as a Modbus slave on the PLC, the PLC automatically
responds based on the communication command of the host computer.

 ■ Free communication protocol

Protocols other than PLC built-in communication protocols are called "free communication
protocols". To enable communication through a free protocol, programmers must fully understand
the frame structure definition of the protocol. Programmers prepare date strings (stored in the
register) in user programs in advance based on the slave communication protocol and required
communication operations. The system specifies data in the register and automatically sends
the data to serial ports successively. Then the serial ports receive the data. The system saves the
received data in specified regions. Upon receipt of data of specified length, the serial ports notify user
programs through system flags so that user programs can parse received data based on the protocol.

The register can be operated through AM600 free communication protocols. That is, user programs
can access the communication buffer to process the data sending and receiving buffer so that
communication can be enabled through user-defined protocols. You need to configure and prepare
for serial communication during programming so that communication can be conducted based
on requirements. Related tasks include configuring the data sending/receiving mode of serial
ports, baud rate, bits, parity bit, software protocols, and timeout conditions; preparing data for the
sent/ received data buffer; processing sending/receiving labels.

A.3 CANopen Communication Protocol

The function block reads and writes SDOs/PDOs, through which CANopen communication is enabled.
Assign communication variables (object dictionary data in the protocol) to corresponding input
parameters of the function block, and trigger execution conditions to access slave data. AM600 protocols
support the CANopen master only.

A.4 CANlink Communication Protocol

CANlink communication can be enabled through table configuration. Preset communication variables,
communication frequency, and trigger conditions by completing a table. When a device serves as a
CANlink network master, it can be connected to various Inovance remote expansion modules, MD380/500
AC drives, IS620 servos, and other slaves. In addition, it can be connected to other devices as a CANlink
network slave.

CANlink3.0 communication protocol provides the following communication frames.

 ■ Communication frames triggered in timed or conditional mode are used to exchange communication
data between ordinary slaves.

 ■ Synchronous trigger is used to control multiple highly real-time devices that can be controlled
synchronously, for example, synchronous position control of multiple servos.

 ■ Heartbeat frames are used to monitor the communication status of each CANlink network slave so
that the system can promptly respond to control system errors to avoid further losses.

-394-

Appendix

A.5 EtherNET Port and Communication Protocol

The EtherNET port can be used to download PLC user programs, monitor and debug the system (like
the Mini-USB port), and can also be used for Ethernet communication, including TCP/IP Modbus
communication and free communication. You can configure communication parameters and address
registers in the programming software through Modbus protocols, and access register values in user
programs to exchange data with remote Modbus devices. If free communication protocols are used, data
can be exchanged only by operating the socket function block.

A.6 EtherCAT Port and Communication Protocol

The EtherCAT port is used for communication (linear topology, full-duplex mode, Baud rate: 1 Mbit/s)
through standard EtherCAT protocol. The maximum communication distance between slave nodes is 100
m. The master supports synchronization events and DC mode. The maximum task jitter is 120 us (typical
value).

A.7 High-speed I/O Interface

The high-speed I/O interface has high-speed pulse control and high-speed pulse counting functions.

 ■ The high-speed pulse control function is used to control pulse servo drives and stepper drives.

 ■ The high-speed pulse counting function is used to collect A/B-phase, single-phase, CW/CCW pulse
signal frequency and counting.

A.8 Mini-SD Card Slot

The Mini-SD card slot is mainly used to upgrade the underlying PLC firmware. This card slot is unavailable
to users.

A.9 Local Bus Expansion Interface

A PLC can be directly connected to the I/O module through a local bus expansion interface. The PLC
updates addresses of I/O module data mapped to the PLC based on the internal bus cycle.

You can access the mapped addresses to operate the I/O module.

A.10 PROFIBUS DP Port

The PROFIBUS DP port and CAN port are integrated on one DB9 hardware port. Currently, the DP function
is used only for AM610 series.

-395-

Appendix

Appendix B Soft Element

Soft elements are global variables predefined on the AM600 programming system, which can be used
directly. As direct variables, soft elements are mapped to the M area (%M) and are retentive at power
failure (RETAIN). The AM600 programming system includes SD soft elements and SM soft elements. SD
soft elements are INT direct global variables. SM soft elements are BOOL direct global variables.

The M area (%M) has a capacity of 512 KB, the first 480 KB of which is for users and the last 32 KB is for the
system. Do not use the address directly. The first 30,000 bytes of the 32 KB space are used for SD and SM
soft elements to implement special functions, such as CANlink, CANopen, high-speed I/O instructions,
and Modbus, as detailed in the following table. You can access the soft elements.

SD Range Function SM Range Function

0 to 7999
Register elements for users: 0 to 7000
for CANlink (CANlink configuration,
compatible with small-sized PLCs)

0 to 7999

Bit elements for users:

0 to 3071 and 8000 to 8511 for CANlink
(CANlink configuration, compatible with
small-sized PLCs)

0 to 7999 indicate Modbus/Modbus
TCP- triggered variables, which are enabled
by slaves.

8000 to 8999
Register elements for the system:
CANlink/CANopen

8000 to 8999
Bit elements for the system: CANlink/
CANopen

9000 to 9999
Register elements for the system:
currently used only for high-speed I/O

9000 to 9999
Bit elements for the system: currently used
only for high-speed I/O

NOTE

 ◆ The system is automatically reset after Modbus-triggered variables are set.
 ◆ System soft elements can be read and cannot be written. Otherwise, a system error may occur.

For details about how to use soft elements, see descriptions of CANlink soft elements, Modbus soft
elements, and Modbus TCP soft elements.

-396-

Appendix

Appendix C Cheat Sheet of Basic Instructions

Type Description Name Category

Arithmetic operation
instruction

Addition ADD Function

Multiplication MUL Function

Subtraction SUB Function

Division DIV Function

Remainder MOD Function

Valuation instruction Valuation MOV Function

Logic instruction

AND operation AND Function

OR operation OR Function

XOR operation XOR Function

NOT operation NOT Function

Shift instruction

Left shift SHL Function

Right shift SHR Function

Rotation left ROL Function

Rotation right ROR Function

Selection instruction

Either-or selection SEL Function

Maximum MAX Function

Minimum MIN Function

Limit LIMIT Function

One-from-multiple selection MUX Function

Comparison
instruction

Greater than GT Function

Less than LT Function

Greater than or equal to GE Function

Less than or equal to LE Function

Equal to EQ Function

Not equal to NE Function

Basic mathematical
operation instruction

Absolute ABS Function

Square root SQRT Function

Natural logarithm LN Function

Common logarithm LOG Function

Exponent EXP Function

Sine SIN Function

Cosine COS Function

Tangent TAN Function

Arcsine ASIN Function

Arc cosine ACOS Function

Arc tangent ATAN Function

Exponential EXPT Function

-397-

Appendix

Type Description Name Category

Auxiliary
mathematical
operation instruction

(Util library)

Differential DERIVATIVE Function block

Integral INTEGRAL Function block

Integral statistics STATISTICS_INT Function block

Real statistics STATISTICS_REAL Function block

Variance VARIANCE Function block

Type conversion
instruction

Boolean conversion BOOL_TO_<TYPE> Function

Byte conversion BYTE_TO_<TYPE> Function

Date conversion DATE_TO_<TYPE> Function

Long integer conversion DINT_TO_<TYPE> Function

Date-time conversion DT_TO_<TYPE> Function

Double-word conversion DWORD_TO_<TYPE> Function

Integer conversion INT_TO_<TYPE> Function

Word conversion WORD_TO_<TYPE> Function

Real number conversion REAL_TO_<TYPE> Function

Short integer conversion SINT_TO_<TYPE> Function

Character conversion STRING_TO_<TYPE> Function

Clock conversion TIME_TO_<TYPE> Function

Time conversion TOD_TO_<TYPE> Function

Long unsigned integer conversion UDINT_TO_<TYPE> Function

Address operation
instruction

Address ADR Function

Address content ^ Function

Bit address BITADR Function

Index INDEXOF Function

Data size SIZEOF Function

Calling instruction Call CAL Function

Initialization
instruction

Initialize INI Function

String processing
instruction

(standard library)

String length LEN Function

Left string LEFT Function

Right string RIGHT Function

Middle string MID Function

String concatenation CONCAT Function

String insertion INSERT Function

Character deletion DELETE Function

String replacement REPLACE Function

String finding FIND Function

Bistable instruction

(standard library)

Setting priority bistable trigger SR Function block

Reset priority bistable trigger RS Function block

Trigger instruction

(standard library)

Rising edge trigger detection R_TRIG Function block

Falling edge trigger detection F_TRIG Function block

Counter

(standard library)

Incremental counter CTU Function block

Decremental counter CTD Function block

Incremental/decremental counter CTUD Function block

-398-

Appendix

Type Description Name Category

Timer

(standard library)

Ordinary timer TP Function block

Power-on delay timer TON Function block

Power-off delay timer TOF Function block

RTC RTC Function block

BCD conversion
instruction

(Util library)

BCD-to-integer conversion BCD_TO_INT Function

Integer-to-BCD conversion INT_TO_BCD Function

Bit/byte operation
instruction

(Util library)

Bit extraction EXTRACT Function

Bit packing PACK Function

Bit unpacking UNPACK Function block

Bit valuation PUTBIT Function

Counter instruction

(Util library)

PD counter PD Function block

PID counter PID Function block

PID counter PID_FIXCYCLE Function block

Signal generator
instruction

(Util library)

Pulse signal generator BLINK Function block

Cyclic signal generator GEN Function block

Robot operation
instruction

(Util library)

Characteristic curve CHARCURVE Function block

Integral speed limit RAMP_INT Function block

Real speed limit RAMP_REAL Function block

Analog parameter
processing instruction

(Util library)

Hysteresis HYSTERESIS Function block

Upper/lower limit alarm LIMITALARM Function block

Appendix D Guide to PLC Programming Software Upgrade

Version

1) The programming software InoProShop V1.1.0 and earlier versions are incompatible with the latest
version in terms of persistent variable, hard disk partition, high-speed I/O function, and EtherCAT
bus I/O module. It is recommended that you upgrade the software to the latest version. In addition,
versions (earlier than V1.3.2) not mentioned in this section are not recommended. Contact local
vendors if necessary.

2) Slave files, for example, EtherCAT description file (.xml), CANopen description file (.eds), and
PROFIBUS DP description file (.gds), must match the slave firmware version. If you have any
questions, contact local vendors. Slaves not installed for V1.3.2 by default can be supported by
installing corresponding device files.

3) For details about how to use AM400/AM600/AC800 series, see hardware manuals or contact vendors.

Upgrade Method

 ■ Application software installation

A Windows 7 or Windows 10 operating system is required, and the memory must not be less than 4
GB. It is recommended that you use a 64-bit instead of a 32-bit Chinese-English operating system.

-399-

Appendix

Install the software based on the wizard or set the installation path during installation as required. The
default installation path is C:\Inovance Control\InoProShop.

NOTE

Do not install the software in the same folder with other versions.

 ■ User project

When you open a project in an earlier version, the Project Version window is displayed. If you do
not want to update the project, select Not update to edit or use it directly. However, the LD must be
updated.

The Project Version window can be displayed automatically when you open a previous project.
Alternatively, you can choose Project > Project Version to display the window.

You can update all or some projects.

1) To update all projects, on the Project Version window, select Update all projects to the latest
version, and then click OK.

2) To update some projects, on the Project Version window, select tabs corresponding to the projects to
be updated, and then click OK.

NOTE

The LD must be updated.

 ■ Online firmware upgrade

PLC (CPU module) upgrade

Step 1: Choose Tool > InoProshop Tool > Scan Network, and select a device.

-400-

Appendix

Step 2: Choose Upgrade > Select Firmware > Upgrade.

 ■ EtherCAT module upgrade

Step 1: Choose Device > General, select Enable Expert Settings, and then choose Download > Run.

-401-

Appendix

Step 2: Choose Device > Online > Bootstrap. Then choose FoE > Download. On the dialog box
displayed, find and select the corresponding firmware file with the extension .bin to start upgrade.

 ■ Library upgrade

See the section "How to add a compiled library to the project" of FAQs.

 ■ EtherCAT device file upgrade

Step 1: Choose Device > General, select Enable Expert Settings, and then choose Download > Run.

-402-

Appendix

Step 2: Choose Device > Online > Write EEPROMXML. On the dialog box displayed, find and select
the corresponding XML file to start upgrade.

FAQs

1) How to check the version

Choose Device > Upgrade > Get PLC Information.

2) Target system not matching the connected device

Figure D-1 Target system not matching the connected device
Cause: The PLC for InoProShop is in 3.5.11.10 version, while the actual PLC version is V3.5.10.20. The
InoProShop device version cannot be later than the actual version.

Solution 1: Upgrade the PLC firmware to match the device version (3.5.11.10).

-403-

Appendix

Step 1

Right-click Device, and click Update Device. On the window displayed, select Display all versions to find
the corresponding version. If no matching version is found from the device list, you can select a version
carrying the same first three numbers.

As shown in the following figure, the version "3.5.10.20" does not exist on the list. In this case, you can
select "3.5.10.40" (carrying the same first three numbers) and update the device.

Figure D-2 Updating the PLC

Step 2

Rescan and select the corresponding device. No error is reported, shown as follows.

Figure D-3 Connecting the PLC

-404-

Appendix

Step 3

Choose Device > Upgrade to upgrade the firmware on the Firmware Upgrade page.

1 - Online Firmware Upgrade page

Figure D-4 Upgrading firmware online
Step 4

After the firmware is upgraded, upgrade the PLC to V3.5.11.10 as described in Step 1. Then you can use the
latest version of PLC and its firmware.

Solution 2: Degrade the device to match the firmware version.

Take Step 1 of Solution 1. However, device files of PLCs in earlier versions can be used only with IEC
libraries that match the PLC versions.

When an IEC library is added to the project, as the latest version of the IEC library is added by default, a
compilation error may occur during program compilation because the library version does not match the
PLC version. In this case, you can change the IEC library version manually.

-405-

Appendix

3) Compilation error occurred while adding a library by using the latest version of programming
software

Use V1.3.2 to open a project created by software in versions earlier than V1.3.0 (V1.2.0 as an example),
choose Add library > CmpHCBasic, and use the MC_ResetDrive function block. A compilation error
occurred.

1 - Added IEC library; 2 - Inconsistent version; 3 - Inconsistent version; 4 - Compilation error

Figure D-5 Compilation error occurred while adding a library
Cause: The version of specific libraries that the CmpHCBasic library depends on (SM3_Basic and
IODrvEtherCAT libraries) does not match the version of specific libraries that project library management
depends on. The IODrvEtherCAT version that CmpHCBasic (V1.8.0.0) depends on is V3.5.11.10, while the
referenced version is V3.5.10.0. The SM3_Basic version CmpHCBasic (V1.8.0.0) depends on is V4.2.2.0,
while the referenced version is V4.2.1.0.

Solution

Step 1: Double click Library Manager to display the Library Manager page. Select CmpBasis from the
library list. The library version is V1.8.0.0.

Step 2: On the Library Manager interface, select Properties. In the window displayed, find the Version
tab, select 1.6.0.0 (project created by V1.2.0) from the drop-down list, which is the IEC library version
matching the PLC, and then click OK.

-406-

Appendix

Figure D-6 Updating the IEC library manually
Step 3: Compile the project, as shown in the following figure.

1&2 - Same version; 3 - Compilation succeeded

Figure D-7 Updated IEC library and compilation information

NOTE

The library is incompatible mainly because the version of the system library that the library depends
on does not match the version of the system library included in the previous project. Common
libraries include IODrvEtherCAT and SM3_Basic libraries.

-407-

Appendix

4) How to add a compiled library to the project

Example: CmpHCBasic. compiled-library (V1.11.0.0), software tool (V1.2.60)

This example is applicable to other versions of software tool.

Step 1: Install a compiled library.

Open a project and click Library Manager.

On the Library Manager interface, click Library repository > Install.

Find the compiled library (CmpHCBasic.compiled-library V1.11.0.0) and open it.

-408-

Appendix

Step 2: Add the library to the project.

On the Library Manager interface, click Add library > (Miscellaneous) > +.

Select CmpHCBasic and click OK. By default, the latest version is added to the project.

Step 3: Select the library version manually.

On the Library Manager interface, select CmpHCBasic. Click Properties. The Properties window is
displayed. You can select a version from the drop-down list of Version (confirm that the library version
matches the software tool; otherwise, the system reports a compilation error when you use the library).

-409-

Appendix

NOTE

 ◆ Note:

1) To add a library to the project or update a library, choose Build > Clear All first.
2) After the library is compiled, log in and download it again (a PLC error may be caused by online

download).

Appendix E High-speed I/O Compatibility

User Guide

CmpHCBuiltinIo: Earlier high-speed I/O function block library

CmpHSIO: Latest high-speed I/O function block library

InProShop in V1.2.0 (temporary version: 1.1.60.0), AM600 firmware in V1.19.70.0 and FPGA in A624 version
and later versions support the latest high-speed I/O function block library. The following figures show the
software UIs for earlier and latest I/O devices respectively.

UI for high-speed I/O device in earlier version

-410-

Appendix

UI for high-speed I/O device in the latest version

Note

1) Match the latest version of high-speed I/O device to the latest version of high-speed I/O library, and
match the earlier version of high-speed I/O device to the earlier version of high-speed I/O library.

2) To use functions of the latest version of high-speed I/O device, you need to upgrade both PLC
firmware and FPGA.

3) The latest and earlier high-speed I/O functions can be switched over to each other (incompatible with
homing). If the latest high-speed I/O device is mixed with the earlier high-speed I/O device (the latest
high-speed I/O project with an earlier PLC high-speed I/O device or an earlier I/O project with the
latest PLC high-speed I/O device), a message is displayed reminding you to switch the PLC, as shown
in the following figure. You need to switch the version of high-speed I/O device and restart the PLC.

4) If you do not want to switch the PLC, you can switch the version of high-speed I/O device for the
project. Display the Update Device interface, as shown in the following figure. The earlier high-speed
I/O device is in 0.0.0.10 version, and the latest I/O device is in 0.0.0.20 version.

-411-

Appendix

5) If you use earlier software tool (for example, V1.1.0 or V0.0.9.10) to download an earlier high- speed
I/O project to the PLC with the latest version of firmware (later than V1.19.70.0), the error indicating
version not matched is reported.

Solution: Install the latest version of software tool, and use it to open and download an earlier project (the
high-speed I/O function not used) to the PLC with the latest version of firmware. In this case, no error is
reported.

High-speed I/O Diagnosis

(1) High-speed I/O device in the latest version

Basic format

Library + function block + error code

3 3-bit

 ■ Library: The default high-speed I/O is 0.

 ■ Function block number: Function blocks are numbered from 01. Function blocks are detailed in
"6.2.4 List of Function Blocks".

 ■ Error code: The error code starts from 01. Error codes are detailed in the list of counter error codes.
If the error code is less than 500, it indicates a serious error. If the error code is greater than 500, it
indicates a function block error. In the example of 14506, 14 indicates HC_WriteParameter, and 506
indicates a parameter error. In the example of 31520, 31 indicates MC_WriteParameter_P, and 520
indicates a parameter error.

Table E-2 List of counter error codes

Error Code Definition Description

001 ERR_COUNTERID_INVALID
The entered channel number is invalid. A valid
number ranges from 0 to 7.

003 ERR_CNT_OVERFLOW The counter overflow/underflow is incorrect.

004 ERR_COUNTER_NOT_CHOSEN
No high-speed function is selected. Select a high-
speed in the programming software.

007 ERR_COUNTER_NOT_ENABLED HC_Counter is not enabled.

101 ERR_WRITEINTERRUPTPARAMETER_UNVALIAD The write interrupt parameter is invalid.

102 ERR_INTERRUPT_NOT_CHOSE
Interrupt Input is not selected in the programming
software.

501
ERR_SETCOMPARE_IMREFRESHCYCLE_
OVERFLOW

The comparison value ImRefreshCycle exceeds
30000. A valid comparison value ranges from 0 to
30000.

502 ERR_SETCOMPAREM_NUMBERS_OVERFLOW
The HC_SetCompareM number ranges from 1 to
100.

503 ERR_PREWR_VALUE_OVERFLOW The preset value is out of range.

504 ERR_AVERAGE_PARA_UNVALIAD
The set average frequency and average rotational
speed are invalid.

505 ERR_ROTATION_PULSES_UNIT_UNVALIAD The set number of pulses per rotation is invalid.

506 ERR_WRITEBOOlPARAMETER_UNVALIAD
The set HC_WriteBoolParameter parameter is
invalid.

507 ERR_READBOOLPARAMETER_UNVALIAD
The obtained HC_ReadBoolParameter parameter
is invalid

508 ERR_MEASURE_WIDTH_OVERFLOW The measured width is invalid.

-412-

Appendix

Error Code Definition Description

509
ERR_SETCOMPAREM_IMREFRESHCYCLE_
OVERFLOW

The comparison value ImRefreshCycle exceeds
30000. A valid comparison value ranges from 0 to
30000.

510 ERR_PRESET_TRIGGERTYPE_OVERFLOW The preset parameter is invalid.
511 ERR_WRITEPARAMETER_UNVALIAD The set HC_WriteParameter parameter is invalid.

513 ERR_FUNC_COUNTERID_INVALID
The special function channel number is invalid. A
valid number ranges from 0 to 3.

514 ERR_COUNTER_NOT_CHOSE_EXETERNAL_X
External Trigger is not selected in the
programming software.

515 ERR_CNT_FORMAT_NOT_RING
The ring counting type is incorrect. Select a correct
type in the programming software.

516 ERR_RING_DOWNVAL_BEYOND_UPVAL
The lower limit for ring counting is equal to or
greater than the upper limit.

517 ERR_SAMPLE_VALUE_LESS
The sampling time is too short. A valid value ranges
from 10 to 65535, in the unit of ms.

518 ERR_RING_VALUE_OVERFLOW The ring counting is out of range.

Table E-3  List of high-speed axis error codes

Indicates the
error code.

Definition Description

001 ERR_NOT_POWER MC_Power is not enabled.

002 ERR_UP_SOFTWARE_LIMIT
The current position is beyond the software stroke
limit (Up).

003 ERR_DOWN_SOFTWARE_LIMIT
The current position is beyond the software stroke
limit (Down).

004 ERR_AXIS_FUNC_UNUSED
The high-speed axis is not enabled. Enable the axis
in the programming software.

005 ERR_INPUT_CHANNAL_NUM_INVALID
The axis number is invalid. A valid number ranges
from 0 to 3.

006 ERR_DEST_POS_OVER_SOFT_UP_LIMIT
The target position is beyond the upper software
limit.

007 ERR_DEST_POS_OVER_SOFT_DOWN_LIMIT
The target position is beyond the lower software
limit.

010 ERR_POS_DECPOINT_OVERLOW
The deceleration point is invalid: In position mode,
when the device is repositioned, the deceleration
length is greater than the actual distance.

011 ERR_VEL_DECPOINT_OVERLOW

The deceleration point is invalid: When you switch
from the speed mode to the position mode, the
deceleration length is greater than the actual
distance.

012 ERR_POS_PLSNUM_OVERLOW
The maximum PLSNUM positioning length
2147483647 is exceeded.

013 ERR_POS_DECPOINT2_OVERLOW
An error occurred while recomputing the
deceleration point.

501 ERR_ACC_SET_OVERFLOW
The acceleration exceeds the maximum value set
by MC_WriteParameter_P.

502 ERR_ACC_SET_LOW
The acceleration is below the minimum value set
by MC_WriteParameter_P.

503 ERR_DEC_SET_OVERFLOW
The deceleration exceeds the maximum value set
by MC_WriteParameter_P.

504 ERR_DEC_SET_LOW
The deceleration is below the minimum value set
by MC_WriteParameter_P.

505 ERR_VEL_SET_OVERFLOW
The set speed is out of range. Set the speed
in the programming software or through MC_
WriteParameter_P.

-413-

Appendix

Indicates the
error code.

Definition Description

506 ERR_VEL_SET_LOW The set speed is too low.

508 ERR_VEL_LESS_THAN_STARTVEL
The speed is less than the startup offset speed.
Set the startup offset speed in the programming
software.

509 ERR_STARTVEL_SET_LOW The starting speed is too small.
510 ERR_FBD_MOVEMODE_INVALIAD The motion mode of the function block is invalid.
511 ERR_WASNT_STANDSTILL The axis is not in Standstill state.
512 ERR_WASNT_DISABLED The axis is not in Disabled state.
513 ERR_IN_ERRORSTOP The axis is in ErrorStop state.
514 ERR_NOT_READY_FOR_MOTION The axis is not ready to run.
515 ERR_INVLALID_VELOCITY_MODE The speed mode is invalid.
516 ERR_INVLALID_POSTION_MODE The position mode is invalid.
520 ERR_AXIS_WRITEPARAMETER_UNVALIAD The MC_WriteParameter_P parameter is invalid.
521 ERR_AXIS_READPARAMETER_UNVALIAD The MC_ReadParameter_P parameter is invalid.

522 ERR_HOME_MODE_UNVALIAD
The homing mode is invalid. Select a valid mode in
the programming software.

523
ERR_AXIS_WRITEPARAMETER_HOME_MODE_
UNVALIAD

The homing mode is invalid.

Errors can be classified into axis errors and function block errors.

Conditions for setting the axis to ErrorStop state:

1) Axis errors occur.

2) Function block errors occur when the axis is in DiscreteMotion, ContinuousMotion, or Homing state.

(2) High-speed I/O device in earlier version

High-speed I/O diagnosis information is displayed on the high-speed I/O self-diagnosis page. For
descriptions of the self-diagnosis page, see the overview of the list of device self-diagnosis information.

High-speed I/O diagnosis information is obtained by obtaining high-speed I/O soft elements. High-speed
I/O diagnosis results include channel errors, channel alarms, axis errors, axis alarms, and other faults. The
diagnosis states and diagnosis codes of channel errors, channel alarms, axis errors, and axis alarms are
indicated by soft elements. The diagnosis state indicates whether diagnosis information exists, and the
diagnosis code indicates the error code. The following table shows soft elements, diagnosis codes, and
diagnosis information corresponding to each type.

 ■ Channel error

The following table lists the relationship among the channel number, error flag soft element, and
error diagnosis code soft element.

Channel Number Error Flag Soft Element Error Diagnosis Code Soft Element

0 SM9030 SD9007

1 SM9080 SD9017

2 SM9130 SD9027

3 SM9180 SD9037

4 SM9230 SD9047

5 SM9380 SD9057

6 SM9330 SD9067

7 SM9380 SD9077

-414-

Appendix

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

1001 Unmatching channel type

1002 Counter overflow

1003 Pulse width measurement overflow

1011 The lower limit for the ring counter above the upper limit

1012 Unmatching counter type

1013 Unused high-speed counting function

1014 Unmatching high-speed counter function

1015 Preset value out of range

1016 Invalid average parameter

1017 Invalid set number of pulses per rotation

 ■ Channel alarm

The following table lists the relationship among the channel number, alarm flag soft element, and
alarm diagnosis code soft element.

Channel Number Alarm Flag Soft Element Alarm Diagnosis Code Soft Element

0 SM9031 SD9008

1 SM9081 SD9018

2 SM9131 SD9028

3 SM9181 SD9038

4 SM9231 SD9048

5 SM9381 SD9058

6 SM9331 SD9068

7 SM9381 SD9078

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

1501 Sampled value overflow

 ■ Axis error

The following table lists the relationship among the axis number, error flag soft element, and error
diagnosis code soft element.

Axis Number Error Flag Soft Element Error Diagnosis Code Soft Element

0 SM9405 SD9105

1 SM9425 SD9125

2 SM9445 SD9145

3 SM9465 SD9165

-415-

Appendix

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

2001 Hardware limit in the forward direction

2002 Hardware limit in the reverse direction

2003 Stop upon startup command ON

2004 Software limit in the forward direction

2005 Software limit in the reverse direction

2006
CPU module switched to Stop state during
running

2007 Drive module ready OFF

2008 Zero signal ON

2009 Mechanical homing not executed

2010 Retry error

2011 ABS transmission timeout

2012 ABS transmission SUM

2013 Speed 0 error

2014 Acceleration/deceleration timeout

2015 Deceleration stop timeout

2016
Movement during speed/position switchover
control out of range

2017 Speed/position switchover disabled

2018 Current value changed not in axis stop state

2019 Acceleration/deceleration time set to 0

2020 Axis not stopped upon startup

2021 Stop for axis command

 ■ Axis alarm

The following table lists the relationship among the axis number, alarm flag soft element, and alarm
diagnosis code soft element.

Axis Number Alarm Flag Soft Element Alarm Diagnosis Code Soft Element

0 SM9406 SD9106

1 SM9426 SD9126

2 SM9446 SD9146

3 SM9466 SD9166

The following table lists the relationship between the diagnosis code and diagnosis information.

Diagnosis Code Diagnosis Information

2501 Speed out of range

2502 Target position change disabled

2503 Speed change disabled

 ■ Other faults

Other faults indicate diagnosis of invalid input parameters of the high-speed I/O function block. The
diagnosis data cannot be obtained through soft elements. You can check the data on the high-speed
I/O self-diagnosis page and the diagnosis information list page. The following table lists diagnosis
codes and diagnosis information.

-416-

Appendix

Diagnosis Code Diagnosis Information

1018
Invalid channel number for the high-speed
input function block

1019
Invalid input parameter of the high-speed
input function block

2022
Invalid channel number for the high-speed
output function block

2023
Invalid input parameter of the high-speed
output function block

Appendix F Diagnosis Code and Diagnosis Information

Each diagnosis code has a name, which matches the type name of the corresponding diagnosis
programming interface. For details, see "7.5 Diagnosis Programming Interface".

CPU Diagnosis Code

Name
Diagnosis

Code
Diagnosis Information

SDCardError 1 SD card error
FlashError 1 Flash error
SystemError 0 x 40 High-speed I/O interface board connection error

InterCommError

0x11 No I/O expansion module (inter-board communication error: read check failure)
0x12 No I/O expansion module (inter-board communication error: write check failure)
0x13 No I/O expansion module (inter-board communication error: ACK being high level)
0x14 No I/O expansion module (inter-board communication error: ACK being low level)

0x21
Actual number of I/O expansion modules below configured (inter-board
communication error: read check failure)

0x22
Actual number of I/O expansion modules below configured (inter-board
communication error: write check failure)

0x23
Actual number of I/O expansion modules below configured (inter-board
communication error: ACK being high level)

0x24
Actual number of I/O expansion modules below configured (inter-board
communication error: ACK being low level)

0x31
Actual number of I/O expansion modules above configured (inter-board
communication error: read check failure)

0x32
Actual number of I/O expansion modules above configured (inter-board
communication error: write check failure)

0x33
Actual number of I/O expansion modules above configured (inter-board
communication error: ACK being high level)

0x34
Actual number of I/O expansion modules above configured (inter-board
communication error: ACK being low level)

0x41
I/O expansion module type error (inter-board communication error: read check
failure)

0x42
I/O expansion module type error (inter-board communication error: write check
failure)

0x43
I/O expansion module type error (inter-board communication error: ACK being high
level)

0x44
I/O expansion module type error (inter-board communication error: ACK being low
level)

-417-

Appendix

Name
Diagnosis

Code
Diagnosis Information

ConformenceError

(Each bit indicates
one module fault.)

1 I/O module corresponding to Slot 1 inconsistent with actual I/O module configuration
2 I/O module corresponding to Slot 2 inconsistent with actual I/O module configuration
4 I/O module corresponding to Slot 3 inconsistent with actual I/O module configuration
8 I/O module corresponding to Slot 4 inconsistent with actual I/O module configuration

16 I/O module corresponding to Slot 5 inconsistent with actual I/O module configuration
32 I/O module corresponding to Slot 6 inconsistent with actual I/O module configuration
64 I/O module corresponding to Slot 7 inconsistent with actual I/O module configuration

128 I/O module corresponding to Slot 8 inconsistent with actual I/O module configuration
256 I/O module corresponding to Slot 9 inconsistent with actual I/O module configuration

512
I/O module corresponding to Slot 10 inconsistent with actual I/O module
configuration

1024
I/O module corresponding to Slot 11 inconsistent with actual I/O module
configuration

2048
I/O module corresponding to Slot 12 inconsistent with actual I/O module
configuration

4096
I/O module corresponding to Slot 13 inconsistent with actual I/O module
configuration

8192
I/O module corresponding to Slot 14 inconsistent with actual I/O module
configuration

16384
I/O module corresponding to Slot 15 inconsistent with actual I/O module
configuration

32768
I/O module corresponding to Slot 16 inconsistent with actual I/O module
configuration

IOModulePosError
(Each bit indicates
one module
fault. As fault
information is
displayed on
the I/O module,
the diagnosis
information is
not displayed but
flagged.)

1 I/O module corresponding to Slot 1 faulty
2 I/O module corresponding to Slot 2 faulty
4 I/O module corresponding to Slot 3 faulty
8 I/O module corresponding to Slot 4 faulty

16 I/O module corresponding to Slot 5 faulty
32 I/O module corresponding to Slot 6 faulty
64 I/O module corresponding to Slot 7 faulty

128 I/O module corresponding to Slot 8 faulty
256 I/O module corresponding to Slot 9 faulty
512 I/O module corresponding to Slot 10 faulty

1024 I/O module corresponding to Slot 11 faulty
2048 I/O module corresponding to Slot 12 faulty
4096 I/O module corresponding to Slot 13 faulty
8192 I/O module corresponding to Slot 14 faulty

16384 I/O module corresponding to Slot 15 faulty
32768 I/O module corresponding to Slot 16 faulty

FunctionErrorCode

(Each bit indicates
one bus fault,
which is only
flagged.)

0x01 DP bus faulty
0x02 EtherCAT bus faulty
0x04 CANopen bus faulty
0x08 CANlink bus faulty
0x10 Modbus TCP faulty
0x20 Modbus serial port 0 faulty
0x40 Modbus serial port 1 faulty
0x80 High-speed I/O faulty

NOTE

As EtherCAT is implemented through CoDeSys, the PLC cannot obtain EtherCAT diagnosis information
directly, and EtherCAT bus flags are invalid currently.

-418-

Appendix

I/O Module Diagnosis Code

Name Module Type Diagnosis Code Diagnosis Information
BaseInfo All 64 System shut down upon fault event

ModuleError (Each bit
indicates one module
fault.)

AI
2 No external load voltage
4 Analog chip connection error

AO
2 No external load voltage
4 Analog chip connection error
8 Analog chip overheated

ChannelError[i]

(Each array element
indicates one channel
diagnosis code, and
each bit indicates one
fault.)

AI

2 Overflow
4 Underflow
8 Beyond the upper limit

16 Beyond the lower limit
32 Disconnected

AO

2 Overflow
4 Underflow
8 Current disconnected

16 Voltage short-circuited
32 Digital to Analog Converter (DAC) channel hardware fault

CANopen Diagnosis Code

Name
Diagnosis

Code
Diagnosis Information

SlaveError 1 Slave disconnected

InterCommError

0x11 No I/O expansion module (inter-board communication error: read check failure)
0x12 No I/O expansion module (inter-board communication error: write check failure)
0x13 No I/O expansion module (inter-board communication error: ACK being high level)
0x14 No I/O expansion module (inter-board communication error: ACK being low level)

0x21
Actual number of I/O expansion modules below configured (inter-board
communication error: read check failure)

0x22
Actual number of I/O expansion modules below configured (inter-board
communication error: write check failure)

0x23
Actual number of I/O expansion modules below configured (inter-board
communication error: ACK being high level)

0x24
Actual number of I/O expansion modules below configured (inter-board
communication error: ACK being low level)

0x31
Actual number of I/O expansion modules above configured (inter-board
communication error: read check failure)

0x32
Actual number of I/O expansion modules above configured (inter-board
communication error: write check failure)

0x33
Actual number of I/O expansion modules above configured (inter-board
communication error: ACK being high level)

0x34
Actual number of I/O expansion modules above configured (inter-board
communication error: ACK being low level)

0x41
I/O expansion module type error (inter-board communication error: read check
failure)

0x42
I/O expansion module type error (inter-board communication error: write check
failure)

0x43
I/O expansion module type error (inter-board communication error: ACK being high
level)

0x44
I/O expansion module type error (inter-board communication error: ACK being low
level)

-419-

Appendix

Name
Diagnosis

Code
Diagnosis Information

ConformenceError

(Each bit indicates
one module fault.)

1 I/O module corresponding to Slot 1 inconsistent with actual I/O module configuration
2 I/O module corresponding to Slot 2 inconsistent with actual I/O module configuration
4 I/O module corresponding to Slot 3 inconsistent with actual I/O module configuration
8 I/O module corresponding to Slot 4 inconsistent with actual I/O module configuration

16 I/O module corresponding to Slot 5 inconsistent with actual I/O module configuration
32 I/O module corresponding to Slot 6 inconsistent with actual I/O module configuration
64 I/O module corresponding to Slot 7 inconsistent with actual I/O module configuration

128 I/O module corresponding to Slot 8 inconsistent with actual I/O module configuration
256 I/O module corresponding to Slot 9 inconsistent with actual I/O module configuration

512
I/O module corresponding to Slot 10 inconsistent with actual I/O module
configuration

1024
I/O module corresponding to Slot 11 inconsistent with actual I/O module
configuration

2048
I/O module corresponding to Slot 12 inconsistent with actual I/O module
configuration

4096
I/O module corresponding to Slot 13 inconsistent with actual I/O module
configuration

8192
I/O module corresponding to Slot 14 inconsistent with actual I/O module
configuration

16384
I/O module corresponding to Slot 15 inconsistent with actual I/O module
configuration

32768
I/O module corresponding to Slot 16 inconsistent with actual I/O module
configuration

IOModulePosError
(Each bit indicates
one module
fault. As fault
information is
displayed on
the I/O module,
the diagnosis
information is
not displayed but
flagged.)

1 I/O module corresponding to Slot 1 faulty
2 I/O module corresponding to Slot 2 faulty
4 I/O module corresponding to Slot 3 faulty
8 I/O module corresponding to Slot 4 faulty

16 I/O module corresponding to Slot 5 faulty
32 I/O module corresponding to Slot 6 faulty
64 I/O module corresponding to Slot 7 faulty

128 I/O module corresponding to Slot 8 faulty
256 I/O module corresponding to Slot 9 faulty
512 I/O module corresponding to Slot 10 faulty

1024 I/O module corresponding to Slot 11 faulty
2048 I/O module corresponding to Slot 12 faulty
4096 I/O module corresponding to Slot 13 faulty
8192 I/O module corresponding to Slot 14 faulty

16384 I/O module corresponding to Slot 15 faulty
32768 I/O module corresponding to Slot 16 faulty

-420-

Appendix

DP Diagnosis Code

Name Diagnosis Code Diagnosis Information

ExtDiagData[0]

(Each bit indicates one fault.)

0x02 Unready to exchange data
0x04 Incorrect configuration
0x08 Expanded diagnosis information existing on the slave
0x10 The requested function not supported by the slave
0x20 Invalid slave response
0x40 Incorrect parameter
0x80 Locked by different masters

ExtDiagData[1]

(Each bit indicates one fault.)

0x01 Resetting the parameter
0x02 A static diagnosis
0x08 Activated Watchdog monitoring
0x10 Processing slave data in latch mode
0x20 Processing slave data in synchronous mode
0x80 The slave not activated by the master

ExtDiagData[2]

(Each bit indicates one fault.)
0x80 Diagnosis data overflow

ExtDiagData[3] (master address)
ExtDiagData[4] and ExtDiagData[5]

(slave ID)

NOTE

The first 6 bytes correspond to the basic diagnosis, and the following diagnosis data bits correspond
to the expanded diagnosis. For details, see DP Diagnosis.

CANlink Diagnosis Code

Name Diagnosis Code Diagnosis Information

CmdFrameError
(diagnosis code:
remainder when divided
by 100)

1 Illegal command code
2 Abnormal command code address
3 Value out of allowable range
4 Invalid command code operation
5 Invalid command code length
6 Command code timeout

CfgFrameError

(diagnosis code:
remainder when divided
by 100)

1 Incorrect configuration code
2 Incorrect configuration index
3 Incorrect configuration information
5 Incorrect configuration data length
6 Configuration frames failing to respond

-421-

Appendix

Modbus Diagnosis Code

Name Diagnosis Code Diagnosis Information

DiagData

0x70 Incorrect Modbus slave address
0x71 Incorrect data frame length, serial port 0 (COM0)
0x72 Illegal data address
0x73 CRC error
0x74 Unsupported instruction code

DiagData

0x75 Receiving timeout
0x76 Illegal data value
0x77 Buffer overflow
0x78 Frame error
0x79 Serial protocol error
0x7C Incorrect address
0x7D No data received
0x7E Incorrect data returned by the slave
0x80 Incorrect Modbus slave address
0x81 Incorrect data frame length, serial port 1 (COM1)
0x82 Illegal data address
0x83 CRC error
0x84 Unsupported instruction code
0x85 Receiving timeout
0x86 Illegal data value
0x87 Buffer overflow
0x88 Frame error
0x89 Serial protocol error
0x8C Incorrect address
0x8D No data received
0x8E Incorrect data returned by the slave
0x90 Incorrect Modbus slave address
0x91 Incorrect data frame length, Ethernet (Modbus TCP)
0x92 Illegal data address
0x93 CRC error
0x94 Unsupported instruction code
0x95 Receiving timeout
0x96 Illegal data value
0x97 Buffer overflow
0x98 Frame error
0x99 Serial protocol error
0x9A Slave not connected
0x9B Incorrect protocol identifier
0x9C Incorrect address
0x9D No data received
0x9E Incorrect data returned by the slave
0x9F Number of connected clients out of range
0xA0 Illegal data value

-422-

Appendix

EtherCAT Diagnosis Code

Name Diagnosis Code Diagnosis Information

m_LastError
0 No error

1 PLC communication disconnected. Check the network cable.

m_LastError

2 An error occurred to the working counter of the synchronization unit.

3 An error occurred to the bus distribution clock.

4 Failed to start the first network adapter.

5 Failed to start the second network adapter.

6 The first and the second network adapters share the same address.

7 Failed to initialize all slaves.

8 An error occurred to the working counter.

9 Inconsistency between the read slave vendor ID and the configuration

10 Inconsistency between the read product ID and the configuration

11 An error occurred while writing an SDO.

12 SDO transmission timing out

13 Slave emergency message

14 An error occurred while writing an SOE.

15 SOE transmission timing out

16 Watchdog timing out

101 Unknown error

102 Failed to request memory for the mailbox.

106 Inconsistency between the firmware version and EEPROM

107 Failed to update the firmware

117 Invalid request state change

118 Uncertain state request

119 Unsupported guidance mode

120 Invalid firmware program

121 Invalid mailbox configuration in Boot mode

122 Invalid mailbox configuration in Pre-op mode

123 Invalid SM channel configuration

124 Invalid input data

125 Invalid output data

126 A synchronization error occurred.

127 An error occurred to SM watchdog.

128 Invalid SM type

129 Invalid output configuration

130 Invalid input configuration

131 Invalid watchdog configuration

132 Starting the slave in cold mode

133 Initializing the slave

134 Pre-operating the slave

135 Operating the slave securely

136 Invalid input mapping

-423-

Appendix

Name Diagnosis Code Diagnosis Information

m_LastError

137 Invalid output mapping

138 Inconsistent settings

139 The slave failing to run in free mode

140 The slave failing to run in synchronous mode

141 The slave needs to run in three buffer modes in free mode.

142 Watchdog

143 Invalid I/O data

144 A severe synchronization error occurred.

145 No synchronization interrupt signals for the slave

146 Too short synchronization cycle period

147

148 Invalid DC synchronization configuration

149 Invalid DC latch configuration

150 A PLL error occurred.

151 A DC I/O error occurred.

152 Invalid DC timeout

153 Invalid synchronization cycle period

154 Inappropriate DC cycle for Sync0

155 Inappropriate DC cycle for Sync1

165 An MBX_AOE error occurred.

166 An MBX_EOE error occurred.

167 An MBX_COE error occurred.

168 An MBX_FOE error occurred.

169 An MBX_SOE error occurred.

179 An MBX_VOE error occurred.

180 Failed to access the EEPROM address.

181 An EEPROM error occurred.

182 External hardware unready

212
Inconsistency between the configuration detected by the slave and
that in the programming software

M
edium

-Sized PLC Program
m

ing Softw
are User Guide

User Guide

A00
Data code 19010980Copyright 　 Shenzhen Inovance Technology Co., Ltd.

Shenzhen Inovance Technology Co., Ltd.
Add.: Building E, Hongwei Industry Park, Liuxian Road, Baocheng No. 70 Zone, Bao’an District, Shenzhen
Tel: +86-755-2979 9595
Fax: +86-755-2961 9897
Service Hotline: 400-777-1260
http: //www.inovance.com

Suzhou Inovance Technology Co., Ltd.
Add.: No. 16 Youxiang Road, Yuexi Town, Wuzhong District, Suzhou 215104, P.R. China
Tel: +86-512-6637 6666
Fax: +86-512-6285 6720
Service Hotline: 400-777-1260
http: //www.inovance.com

User Guide

Medium-Sized PLC Programming Software

AM400/AM600/AC800

and Closed Loop

	Chapter 1 Product Information
	1.1 Overview
	1.1.1 Product Information
	1.1.2 Product Configuration and Module Description
	1.1.3 System Application Process

	1.2 Overview of InoProShop
	1.2.1 Brief Introduction
	1.2.2 Connection Between InoProShop and Hardware
	1.2.3 Acquisition and Installation Requirements
	1.2.4 Installation Procedure
	1.2.5 Uninstallation

	Chapter 2 Quick Start
	2.1 Programming Environment Launching
	2.2 Typical Procedure for Writing a User Program
	2.2.1 User System Configuration Operations
	2.2.2 User Program Writing Operations
	2.2.3 Linkage Configuration Between User Program Variables and Ports
	2.2.4 Configuring the Execution Mode and Running Period of User Program
	2.2.5 User Program Compiling and Login Download

	2.3 Writing a Marquee Sample Project with InoProShop
	2.4 How to Log In to the Main Module
	2.4.1 Prerequisites and Operations of Main Module Login
	2.4.2 Scanning Medium-Sized PLC in InoProShop
	2.4.3 Solution to AM600 Scanning Failure

	Chapter 3 Network Settings
	3.1 Device Configuration
	3.1.1 Network Configuration
	3.1.2 Hardware Configuration
	3.1.3 Configuration Compiling Error Locating

	3.2 CPU Configuration
	3.2.1 General CPU Configuration Procedure
	3.2.2 CPU Parameter Configurations
	3.2.3 I/O Module Configurations
	3.2.4 High-Speed I/O Configuration

	3.3 EtherCAT Configuration
	3.3.1 Overview
	3.3.2 Common Functions
	3.3.3 EtherCAT Master Station
	3.3.4 EtherCAT Slave Station
	3.3.5 CiA402
	3.3.6 Virtual Axis
	3.3.7 AM600-4PME Position Module
	3.3.8 AM600-2HCE Counter Module
	3.3.9 I/O Module
	3.3.10 Library (Implicit Variables)

	3.4 Modbus Editor
	3.4.1 Modbus Master Station Configuration
	3.4.2 Modbus Master-Slave Connection Configuration
	3.4.3 Modbus Master Station Broadcast Configuration
	3.4.4 Modbus Slave Station Configuration
	3.4.5 Modbus Device Diagnosis
	3.4.6 Common Errors of Modbus
	3.4.7 Modbus Variable Addressing
	3.4.8 Modbus Communication Frame Format

	3.5 Using Free Protocols on COM Ports
	3.5.1 Overview
	3.5.2 Serial Hardware Port
	3.5.3 COM Port Configuration
	3.5.4 Communication Configuration
	3.5.5 Registers for Data Sending and Receiving
	3.5.6 Data Send/Receive Tests Through the COM Port Debugging Assistant

	3.6 Modbus TCP Device Editor
	3.6.1 Configuring a Modbus TCP Master
	3.6.2 Configuring Modbus TCP Master-Slave Connection
	3.6.3 Configuring a Modbus TCP Slave
	3.6.4 Diagnosing Modbus TCP Devices
	3.6.5 Common Errors of Modbus TCP
	3.6.6 Modbus TCP Communication Frame Format

	3.7 CANopen Network
	3.7.1 General Process of Using CANopen
	3.7.2 Configuring a CANopen Master
	3.7.3 Configuring a CANopen Slave
	3.7.4 CANopen Module
	3.7.5 Programming Interface

	3.8 CANlink 3.0 Configuration Editor
	3.8.1 CANlink 3.0 Network Structure
	3.8.2 General CANlink Use Process
	3.8.3 CANlink Network Configuration
	3.8.5 Send Configuration
	3.8.6 Receive Configuration
	3.8.7 Synchronous Write by the Master
	3.8.8 Local Slave Configuration
	3.8.9 Device Access to the CANlink 3.0 Network

	3.9 PROFIBUS DP Bus
	3.9.1 General Process of Using PROFIBUS DP
	3.9.2 PROFIBUS DP Master Configuration
	3.9.3 PROFIBUS DP Slave Configuration
	3.9.4 PROFIBUS DP Module

	3.10 HMI Communication Configuration
	3.10.1 Communication Configuration
	3.10.2 Communication Example
	3.10.3 Fault Analysis

	Chapter 4 Programming Basics
	4.1 Direct Address
	4.1.1 Syntax
	4.1.2 PLC Direct Address Storage Area

	4.2 Variable
	4.2.1 Variable Definition
	4.2.2 Variable Type

	4.3 Constant

	Chapter 5 Programming Language
	5.1 Programming Languages Supported by InoProShop
	5.2 Structured Text (ST)
	5.2.1 Expression
	5.2.2 ST Instruction

	5.3 Ladder Diagram (LD)
	5.3.1 Overview
	5.3.2 LD Elements
	5.3.3 LD Editor Options
	5.3.4 Element Selection
	5.3.5 Standard Edit Commands
	5.3.6 LD Menu Commands
	5.3.7 Single-key Command
	5.3.8 Parallel Line Connection
	5.3.9 Drag and Drop
	5.3.10 Graphic Display Tool
	5.3.11 LD Debugging
	5.3.12 LD Data Update

	Chapter 6 Inovance Instruction Library
	6.1 Cheat Sheet of Instructions
	6.1.1 Instructions
	6.1.2 Instruction Classification
	6.1.3 Cheat Sheet of Motion Control Instructions

	6.2 High-speed I/O
	6.2.1 High-speed Counting
	6.2.2 High-speed Axis
	6.2.3 External Interrupt
	6.2.4 List of Function Blocks
	6.2.5 7-segment LED Display

	6.3 CANopen
	6.3.1 CiA405
	6.3.2 CANopen 402
	6.3.3 CANopen 402 Parameter Setting
	6.3.4 CANopen 402 Error Diagnosis
	6.3.5 Precautions

	6.4 EtherCAT Remote Counting
	6.4.1 HC_Counter_ETC
	6.4.2 HC_SetCompare_ETC
	6.4.3 HC_Presetvalue_ETC
	6.4.4 HC_TouchProbe_ETC
	6.4.5 HC_Reset_ETC

	6.5 Process Library
	6.6 Others
	6.6.1 MC_Jog_HC
	6.6.2 MC_ResetDrive
	6.6.3 MC_ResetRemoteModule
	6.6.4 MC_PersistPosition

	Chapter 7 Diagnosis
	7.1 Overview
	7.2 Configuration Diagnosis
	7.2.1 Network Configuration Diagnosis
	7.2.2 Hardware Configuration Diagnosis

	7.3 Fault Diagnosis
	7.4 List of Device Self-diagnosis Information
	7.4.1 CPU Diagnosis
	7.4.2 EtherCAT Diagnosis
	7.4.3 I/O Diagnosis
	7.4.4 CANopen Diagnosis
	7.4.5 PROFIBUS DP Diagnosis
	7.4.6 Modbus RTU Diagnosis
	7.4.7 Modbus TCP Diagnosis
	7.4.8 CANlink Diagnosis

	7.5 Diagnosis Programming Interface
	7.5.1 Overview
	7.5.2 CPU Diagnosis Programming Interface
	7.5.3 CANopen Diagnosis Programming Interface
	7.5.4 PROFIBUS DP Diagnosis Programming Interface
	7.5.5 CANlink Diagnosis Programming Interface
	7.5.6 Modbus Diagnosis Programming Interface
	7.5.7 Modbus TCP Diagnosis Programming Interface
	7.5.8 CPU Stop Control
	7.5.9 EtherCAT Diagnosis

	Appendix
	Appendix A Communication Protocols for Communication Ports
	A.1 Mini-USB Port and Built-in Communication Protocol
	A.2 COM0/COM1 Communication Port and Built-in Protocol
	A.3 CANopen Communication Protocol
	A.4 CANlink Communication Protocol
	A.5 EtherNET Port and Communication Protocol
	A.6 EtherCAT Port and Communication Protocol
	A.7 High-speed I/O Interface
	A.8 Mini-SD Card Slot
	A.9 Local Bus Expansion Interface
	A.10 PROFIBUS DP Port

	Appendix B Soft Element
	Appendix C Cheat Sheet of Basic Instructions
	Appendix D Guide to PLC Programming Software Upgrade
	Version
	Upgrade Method
	FAQs

	Appendix E High-speed I/O Compatibility
	User Guide
	High-speed I/O Diagnosis

	Appendix F Diagnosis Code and Diagnosis Information
	CPU Diagnosis Code
	I/O Module Diagnosis Code
	CANopen Diagnosis Code
	DP Diagnosis Code
	CANlink Diagnosis Code
	Modbus Diagnosis Code
	EtherCAT Diagnosis Code

